Air Force Institute of Technology

AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2021

A Reference Architecture for Rapid CubeSat Development

Sean R. Kelly

Follow this and additional works at: https://scholar.afit.edu/etd

6‘ Part of the Systems Engineering and Multidisciplinary Design Optimization Commons

Recommended Citation

Kelly, Sean R., "A Reference Architecture for Rapid CubeSat Development" (2021). Theses and
Dissertations. 4948.

https://scholar.afit.edu/etd/4948

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4948&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/221?utm_source=scholar.afit.edu%2Fetd%2F4948&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4948?utm_source=scholar.afit.edu%2Fetd%2F4948&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

A REFERENCE ARCHITECTURE FOR RAPID CUBESAT
DEVELOPMENT

THESIS
Sean R. Kelly Capt, USAF

AFIT-ENV-MS-21-M-240

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENV-MS-21-M-240

A REFERENCE ARCHITECTURE FOR RAPID CUBESAT DEVELOPMENT

THESIS

Presented to the Faculty
Department of Systems Engineering and Management
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Systems Engineering

Sean R. Kelly
Capt, USAF

March 2021

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENV-MS-21-M-240

A REFERENCE ARCHITECTURE FOR RAPID CUBESAT DEVELOPMENT

THESIS

Sean R. Kelly
Capt, USAF

Committee Membership:

David R. Jacques, Ph.D.
Chair

Bradley J. Ayres, Ph.D.
Member

Thomas C. Ford, Ph.D.
Member

AFIT-ENV-MS-21-M-240

Abstract

The CubeSat class of nanosatellites has lowered the barrier of entry to space and
has rapidly gained popularity in recent years. The lower development cost, small
form factor, and reuse of commercial off-the-shelf components makes the CubeSat
form factor an ideal platform for University teams, where budget and development
time are extremely limited. To successfully design a CubeSat system in a rapid cycle
conducive to academic timelines, a Reference Architecture geared towards University
CubeSat development would be helpful. A Reference Architecture would speed up the
development process by providing a template, capturing previous work and lessons
learned from subject matter experts, providing a framework to focus on the CubeSat’s
design rather than the fine details of modeling software. A Reference Architecture
can also add functionality that student teams could use and improve over time, such
as pre-built analysis functions and a library of components to choose from. This
thesis presents a CubeSat Reference Architecture designed to meet these needs and
explores its unique features, diagrams, and custom libraries. The CubeSat Reference
Architecture was validated by relevant course instructors and is being used by a cohort

of students in the Spacecraft Design Sequence at AFIT.

v

Acknowledgements

I would like to express my sincerest appreciation to my committee members for
their guidance through this process. I'd also like to thank my colleagues who helped

me test this model and gave me constructive feedback throughout.

Sean Kelly

Contents

Page

Abstractlo iv
[Acknowledgements| v
[List of Figures|. viii
CESEOf TabIes]. . . oottt e xi
[List of Abbreviationsl e xii
L Introductionl.ot 1
LI GeneralTssud 1

[L2 Problem Statement] 3
.. 3

(1.4 Research Objectives and Questions| 4

(1.5 Assumptions and Limitations| 6

(1.6 Approach| 6

L7 PIEVIEW] . . o oot e e e 7

ML TLiterature Reviewl o 8
2.1 OVEIVIEW]. . . .o e 8

2.2 CubeSatsl. 8

[2.3 Model Based Systems Engineering|................ 14

2.4 Reference Architectured 20

2.5 Existing Workl 22

2.6 Validation Tools|.o 29

2.7 Document Generatorsl. i 30

[2.8 SUMIMATY| . . .o vttt 33

([II. Methodology] 34
Bl OVerVIEW!.o 34

[3.2 Status QUo|. 34

[3.3 Developing the Reference Architecture| 38

[B.4 Tnstructor FeedbacKl. 39

3.5 Tool Validation| 40

[3.6 SUMMATY| . .. oot 41

vi

(V. Analysis and Results|. 42
Ml OVEIVIEWI. « vttt e et e e e e e e e e e e 42
[4.2 Organization|.t 42
4.3 GUIdancel.o 46
.4 Requirements| 48
.5 Structurel. 55
6 Behaviorottt 61
A7 Analysis| ... 66
4.8 Component Libraryl.......... 74
4.9 Document Generatorsl. 80
4.10 Validation of Modell. 84
M. T SUMIMATY| « oottt e e e e e e 85
V. Conclusion]ot 86
D] OVEIVIEWI. . vttt et e e e e e 86
[5.2 Significance of Research|......... 86
(5.3 Tessons Learnedl.o 88
.4 Future Workl.o 89
[>.5 Final Thoughts| 90
Bibliography] 91

vil

List of Figures

Figure Page
{1 CubeSat Launches| 9
[2 1U CubeSat Example| 10
[3 6U CubeSat Example| 10
4 CubeSat Sizes|. 11
(5 CubeSat Development by Institution| 12
(6 CubeSat Companies|. 13
(7 oystems Engineering "Vee”| 15
(8 SysML Taxonomy| 17
[9 Retference Architecture Purposel.......... 20
(10 SUAS Component Library| 24
(11 SDUAS Organization| 24
(12 CRM CubeSat Domain|. 25
(13 CRM Scope|. . ..o 26
(14 CRM Ground Segment| 26
(15 CRM Space Segment|. 27
(16 CRM Stakeholders|. 28
17 CONOPS Document Generator].oiii ... 31
(18 CONOPS Document Generator Output|............................ 32
(19 Containment Treel 43
[20 Model Organization|. 44
21 Index|o 45
22 GUIdaNCE]o 46

viil

Figure Page

[23 Modeling Rules|. 47
[24 Requirements Organization|, 49
25 Source Documentation| 50
[26 Design Constraints|. o1
[27 Stakeholder Analysis|....... 52
28 Stakeholder Matrix] 53
[29 Mission Requirements| 54
(30 Subsystem Requirements| 55
(31 Mission Context bddl........ 56
(32 Mission Context ibd| 57
[33 Physical Decomposition| 59
(34 ADCS Template]. ... 60
[35 ADCS tailoredlo 60
(36 State Machinel. 61
[37 Behavior Organization|. 62
B8 Mission Phases|.o 64
[39 Mission Phase Descriptions| L 65
{40 Fault Management|. 66
41 Analysis Organization|............ 68
{42 Thermal Analysis|. 70
{43 Thermal Analysis Instance]........... 71
{44 Thermal Analysis Run| 72
45 EPS Testsl . .o 74
46 EPS Test Verification|o 74

X

Figure Page

{47 Component Library|........ 76
{48 Component Library - Structures| 76
{49 Component Library - EPS| 7
[>0 Custom Value Type Library]l. 79
53 Document Generators] i 81
(52 Document Generator Title Page| 82
B3 Manual Table Methodl. 83
64 Automatic Table Method| 84

List of Tables

Table Page
(1 Design Outputs| 36
[2 Typical CubeSat Development Process| 37
[3 AFTT CubeSat Development Process|............... 38

x1

List of Abbreviations

Abbreviation Page
(AFTT Air Force Institute of Technology|............. 2
(MBSE Model-Based Systems Engineering|......................... ... 2
[STK Systems Tool-Kit|. 4
(VTL Apache’s Velocity Templating Language|. 6
[SSDL Space and Systems Development Laboratoryf................... 8
[COTS Commercial Off The Shelfl o 9
HET Hall Effect Thrusterl o 11
LEO Low Farth Orbitl o 13
{[OT Internet of Things|........ 13
(INCOSE International Council on Systems Engineering|................. 14
[SysML Systems Modeling Language| 16
(OOSEM Object-Oriented Systems Engineering Method|. 16
(UML Unified Modeling Languagel. 16
(bdd Block Definition Diagram| 17
[ibd Internal Block Diagram| 17
(DoD Department of Defense|. 20
[DoDAF Department of Defense Architecture Framework|............ ... 20
PUAS omall Unmanned Aircraft System| 22
(CRM CubeSat Reference Modell 25
(OMG Object Management Group|............ 25
(INCOSE International Council on Systems Engineers|................... 25
[CONOPS Concept of Operations|........... 28

xii

Abbreviation Page
[ORD Operational Requirements Document| 28
[CONOPS Concept of Operations|............. .t .. 30
MCD Mission Capabilities Document|. 34
[CONOPS Concept of Operations|............. 34
(EPS Electrical Power System|. L. 73

xiil

A REFERENCE ARCHITECTURE FOR RAPID CUBESAT DEVELOPMENT

I. Introduction

1.1 General Issue

Designing a spacecraft is a daunting and complex endeavor. Due to the nature
of space launch, most spacecraft only get one chance at success, and spacecraft can
take many years and millions of dollars to develop. As such, modeling, simulation,
and testing are vital for a space vehicle program’s success, and finding new ways to
mature technologies and flight test them can improve this process. The CubeSat-class
of nanosatellite can help by providing a cost-effective platform to mature technologies
or even perform operational missions as part of a CubeSat constellation. This thesis
attempts to assist design teams in rapidly developing and prototyping these CubeSat
designs.

Dr. Will Roper, the former assistant secretary of the Air Force for acquisition,
has emphasized the need for a faster acquisition cycle and for bolder ideas. During
the Air Force Association’s Air, Space and Cyber Conference in 2019, Dr. Roper said
“To become a more competitive acquisition system, the Air Force needs to be aware
of trends in technology. The world is changing. We have to change with it. The
key is to decide which technology will be successful and being able to act on those
trends with a system that is leaner, meaner and faster than our opponents.” [I] In
the space domain, CubeSats are that latest technological ”leaner and meaner” trend,

and the US Air Force and Space Force are embracing it. Additionally, CubeSats are

becoming increasingly popular in the commercial sector around the world, with the
number of CubeSat launches increasing year over year.

To support research in this CubeSat domain, the Air Force Institute of Technology
(AFIT) has a space vehicle design series of courses that guides students through the
Systems Engineering process using a satellite system. Starting with a set of mission
objectives, the design teams perform trade studies, generate requirements, design
the CubeSat system, and perform verification and validation of those requirements
with physical components over the span of three courses. This process mirrors the
real-world development process, but on a much faster timeline.

As design teams begin the development process of a CubeSat, there can be a
steep learning curve. Many engineers are not familiar with Model-Based Systems
Engineering (MBSE) tools or methodologies, and teams need to start their designs
from scratch. Reference Architectures exist in other domains to capture best practices
and provide a starting point for new systems, so this thesis attempts to develop
and demonstrate a Reference Architecture for the CubeSat domain. By providing
CubeSat designers with a template, including automatically generating tables and
documentation, they can focus more on the design and less on learning how to use
and organize the complicated model. Additionally, by providing a component library
to use and pre-built analysis tools using those components, they can build off previous
successful designs and rapidly simulate candidate solutions. Thorough documentation
and guidance included in the Reference Architecture will also increase standardization

amongst the team.

1.2 Problem Statement

There is a need to capture prior knowledge and accelerate learning to allow design
teams to rapidly develop, simulate, and test CubeSat designs and generate traditional

documentation, all from one MBSE tool.

1.3 Scope

This research was primarily intended to aid student design teams in a University
setting, and AFIT’s space vehicle design series of courses is an appropriate test-bed
for this. AFIT’s first space vehicle design course teaches and implements MBSE for
stakeholder analysis and requirements generation; however, the following courses do
not continue the use of the model for the actual design and implementation of the
CubeSat. The goal of this research is to create a useful Reference Architecture to aid
students in designing the physical satellite and tracing system requirements down to
the component level. This Reference Architecture should be useable even by users
not so familiar with MBSE, and it should assist with the system-level review process
including Critical Design Reviews, Test Readiness Reviews, etc. Even though AFIT
students will be the first users of this Reference Architecture, it is generic enough to
be used for any team wishing to develop a CubeSat program from the ground up. It
has all the functionality needed to develop requirements, design the physical system,
and perform basic simulations. It also features helpful resources like a component
library to assist with the physical design and document generators to create tailored
stakeholder documents from model elements. This CubeSat Reference Architecture
is intended to model the CubeSat system, with only minimal modeling for external
systems such as the ground stations. Ground station characteristics are necessary for
some communications analysis, so some basic ground station modeling is included,

but the ground station is not the system of interest. Other external systems, such as

the launch vehicle, are also included just to document interactions as needed, but are
not extensively modeled.

A Reference Architecture offers a baseline template for students to build from,
using lessons learned from past projects and creating the framework to streamline
the design process. A large effort of this research was focused on creating a generic
model with default component specifications throughout. This was intended to spark
ideas in the brainstorming process for students and aid in system analysis. Another
component of this research was creating basic analysis capabilities within the model,
allowing students to tweak component specifications to see how those changes affect
overall capabilities and requirements. Additionally, the model traces the analysis to
template requirements that future teams will tailor for their unique projects. This
allows for rapid simulations of key performance parameters or measures of effective-
ness for the system. Additional work is being done using this Reference Architecture
for more in-depth state analysis and integration with Systems Tool-Kit (STK) and
MATLAB, so it’s critical to form a robust baseline to build off of.

In order to test the validity of the tool, examples of this Reference Architecture
will first be demonstrated to the relevant course instructors to show how it could be
used by students. Feedback will be incorporated into the model before being used by
future classes. Additionally, a comprehensive how-to guide and modeling style guide

will be provided to students to walk through the process using a generic design.

1.4 Research Objectives and Questions

In an effort to improve this rapid-prototyping environment, this thesis demon-
strates the usage of a new Reference Architecture to guide CubeSat design teams
through the whole design process, hopefully speeding up the process and improving

the quality of designs in the end. The first usage of this Reference Architecture will

be the AFIT space vehicle design series, but the Reference Architecture should be

useful to any CubeSat design team as a starting template.

The research objectives are:

1. Create a practical and useful Reference Architecture for rapidly-prototyping

CubeSat designs.

2. Create easy-to-use document generators that use model elements to generate

traditional system level review documentation.
3. Present this Reference Architecture to AFIT instructors for feedback.

4. Lay the groundwork for future analysis work with STK and MATLAB integra-

tion for more comprehensive mission analysis using model elements.

The research questions are:

1. What are the tools necessary to perform mission modeling using model-based

systems engineering?
2. What viewpoints are most useful to common stakeholders?

3. How can useable documentation be generated from only model elements, keep-

ing the source of truth within the model?

4. What needs to be done in the model to allow for external tools (STK, MATLAB,

etc.) to interact with the MBSE tool?

5. Can cloud-based collaboration improve the MBSE design process for interdisci-

plinary teams?

1.5 Assumptions and Limitations

There are of course some limitations to this research. The first is limited standard-
ization amongst the CubeSat community. This thesis is based on how AFIT teaches
MBSE and how AFIT names subsystems, requirements, and documents. Other design
teams may have vastly different practices and conventions, limiting how useful the
Reference Architecture may be without tailoring. Second, this Reference Architecture
uses Cameo Systems Modeler, a tool that might not be available or desired by users.
Third, the Reference Architecture is sensitive to major organizational changes. If a
user wishes to make drastic changes away from the provided structure, some analysis
or document tools may need to be updated or they will not be useful. Finally, the
analysis portion of this Reference Architecture is only useful for initial verification
and validation of requirements, but does not replace more in-depth and robust anal-
ysis. This tool can help rapidly prototype and determine feasibility, but would not

suffice for final design approval.

1.6 Approach

This Reference Architecture will use No Magic’s Cameo Systems Modeler as the
primary modeling tool. Cameo Systems Modeler was chosen as the modeling tool
due to its common usage at AFIT and as it is being used more commonly in program
offices in the Air Force Life Cycle Management Center. Mathworks” MATLAB will
be used for analysis as it is a commonly used program in academia and throughout
the Department of Defense, and it easily integrates with Cameo. Finally, Apache’s
Velocity Templating Language (VTL) will be used to generate documentation from
the model elements. These tools will be used to develop a Reference Architecture

that will be tested by students and then demonstrated to AFIT faculty for feedback.

Once the Reference Architecture is accepted by the faculty, it will be used by students

in the design course sequence and improved from then on.

1.7 Preview

The thesis follows a five-chapter format. Chapter [[| presented the general issue,
listed the research goals, provided the scope and general approach of this research,
and listed assumptions and limitations. Chapter [[I] provides a background on the
current Reference Architectures in the CubeSat domain and how other Reference
Architectures are being used in other fields. Chapter [[TI] describes the methodology
used to address the problem statement and complete the research objectives. Chapter
V] details the resulting Reference Architecture and accompanying analytical tools.
Chapter [V]summarizes the contributions and limitations, and describes areas of future

research to further refine and evolve the Reference Architecture’s usefulness.

II. Literature Review

2.1 Overview

The purpose of this chapter is to highlight the current state of Reference Architec-
tures, including some recent work in the CubeSat domain. To understand the context,
this chapter will start by describing the CubeSat domain and the need for a CubeSat
Reference Architecture. This chapter will also define key terms and explore gaps in
the existing CubeSat models. Reference Architectures in the CubeSat domain are
still a relatively new endeavor, but Reference Architectures in similar domains will

be discussed to learn lessons from those models as well.

2.2 CubeSats

As launch service providers continue to offer more ride-sharing opportunities, ac-
cess to space has never been more available or affordable for small satellites. The
nanosatellite size (1-10 kg) has exploded in popularity over recent years [2], and
among that size class, the CubeSat has become the de facto standard, as shown in
Figure [Il A CubeSat is a sizing standard defined in 1999 by California Polytechnic
State University and Stanford University’s Space and Systems Development Labora-
tory (SSDL), with a basic "1U” unit being 10 cm x 10 cm x 10 cm and a mass less
than 1.33 kg [3]. A 1U CubeSat is shown in Figure [2| for reference, and CubeSats are
defined by how many of these 1U cubes they contain. For example, a 3U CubeSat
is three 1U cubes together, and a 6U CubeSat is six 1U cubes combined, as shown
in Figure [3l Figure [] shows the distribution of sizes, with 1U, 3U, and 6U being
the most commonly launched sizes [2]. This standardized sizing framework allows for
rapid prototyping with common chassis and common dispenser mechanisms, and this

drives down the cost of research and development for these CubeSats. CubeSats also

routinely use Commercial Off The Shelf (COTS) components to further drive down
development costs. To assist design teams, California Polytechnic Institute publishes
these CubeSat Design Specifications for 1U-3U CubeSats and for 6U CubeSats [3],
and NASA publishes a helpful developer’s guide called the ”CubeSat 101" [4].

Total Nanosatellites & CubeSats Launched

WWww.nanosats.eu

1400 =@=Nanosats launched incl. launch failures 1417
=@= CubeSats launched incl. launch failures
1300 CubeSats deployed after reaching orbit 1312 1302
Nanosats with propulsion modules
1200 CubeSats launched in total units 1200

1100

1109
1000
900
800
700
600
500

Running total of satellites

400
300
200
100

Figure 1. CubeSat Launches

Figure 2. 1U CubeSat Example

Figure 3. 6U CubeSat Example

10

Nanosatellite types

WWW. eu

0.25U CubeSat 61 22%
0.5U CubeSat
1U CubeSat 383 139%
1.5U CubeSat
2U CubeSat 174 63%
3U CubeSat
3.5U CubeSat
4U CubeSat
5U CubeSat
6U (1x6U) CubeSat
6U CubeSat
8U (4x2U) CubeSat
8U CubeSat
12U CubeSat
16U CubeSat
Other nanosats (1-10 kg)
PocketQube
TubeSat

ThinSat |§ 13 05% I Launched
Other picosats (0.1-1 kg) 3513% [Not launched

1188 43.1%

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Figure 4. CubeSat Sizes

A primary benefit of the CubeSat standard is the lower cost of both the satellite
hardware and launch costs. The cost of failure for a CubeSat is orders of magnitude
lower than for a large, exquisite satellite, so CubeSats offer a proving ground for
maturing technologies and educating engineers and scientists. A traditional satellite
requires a dedicated launch vehicle, a distinct payload adapter, and millions to bil-
lions of dollars in research and development. By contrast, a CubeSat might only cost
$100,000 to $500,000 in research and development costs, and the launch cost can be
less than $1 Million [5]. Perhaps even more valuable than the reduced cost is the
ability to flight test articles in the space environment to iterate and mature technolo-
gies. Many materials, sensors, and other components have been matured through
CubeSats. For example, the Air Force Academy’s FalconSat-7 was designed to record
data on a polyimide photon sieve and determine its imaging performance before being
used in future operational satellites [6]. Their previous mission, FalconSAT-6, was

designed to improve Hall Effect Thruster (HET) technologies and low power commu-

11

nication options [7]. CubeSats are an ideal research platform, so it makes sense that
Universities launch a significant percentage of total CubeSats, as shown in Figure [f]
followed by companies seeking to capitalize on this lower-cost launch capability. Fig-
ure [6] shows the drastic increase in new companies developing CubeSats, highlighting

the increased relevance of this small satellite size [2].

Nanosatellite launches by organisations WWW.nanosats.eu

700
I Space agency

650 | M Company
I 1ndividual
600 | M Institute
[Military
550 Non-profit 545
School

University 468
Nanosats.eu (2020 Jan) prediction

500

450 437 435

IS
(=3
S

306

297

Nanosatellites
w
W
[=)

w
(=
(=]

250
200
150
100
5(())210274229101411225

® PP P P XX D DD D O DD
7 8 7 g g g o e Y o

Figure 5. CubeSat Development by Institution

12

Founding years of companies active in nanosats since 1990 WWW.nanosats.eu
60

56 56

55

50

Number of entitites founded
—_ n N w w P
W [=] W (=] W [=}

—_
(=]

w

2 2 2

1

(=}

() N OO XL b oo N A O NNV OHY L b AN 9 O
%&0\%%%%%%% N SIS IINIISOIO
$ 99 T T T TN TTITTTSTTSTS ®

Year founded

Figure 6. CubeSat Companies

Furthermore, as resiliency in space becomes more important, CubeSats offer a
solution that is attracting research for military applications. As CubeSats are so small
and affordable, a mission could include many individual CubeSats as a system, or
"swarm,” to create a large constellation that drastically increases the overall reliability
and resiliency for the mission. In the private sector, a notable example is the Swarm
SpaceBee, a 0.25U CubeSat that is part of a 150-CubeSat constellation in Low Earth
Orbit (LEO), testing out global Internet of Things (IOT) tracking of ships, vehicles,
and other remote sensors [§].

Finally, Launch Service Providers are routinely offering ride-share opportunities
as secondary customers, making it much easier to launch these CubeSats in greater
numbers. SpaceX launched SSO-A in 2018 which carried 15 microsatellites (10-100
kg) and 49 CubeSats, which came from universities and other research institutes

from around the world including the previously mentioned FalconSat-6 [9]. This

13

CubeSat standard and the increasing demand for small satellites in orbit has lowered
the barrier to entry, allowing universities and small research teams to develop their
own space programs. In fact, AFIT has its own CubeSats in development, including
the ”Grissom” 6U bus, which will form the foundation for several distinct CubeSat
variations.

Due to the unique advantages that CubeSats offer for both the Department of De-
fense and for small university teams, AFIT has embraced the concept and is preparing
graduate students for future jobs in satellite acquisitions using CubeSats as the pri-
mary tool. Developing a CubeSat is a challenging task, especially for students without
industry experience, so the MBSE method is first taught to students before applying

it to CubeSat design.

2.3 Model Based Systems Engineering

MBSE is increasingly used to develop CubeSats, especially among university teams
such as at AFIT. MBSE is a Systems Engineering methodology that focuses on models
instead of the traditional document-based design approach. This section will explore
the MBSE method, language, and tools used to model CubeSats in this thesis. Before
exploring the advantages of MBSE though, a brief look at Systems Engineering in
general is warranted.

The International Council on Systems Engineering (INCOSE) defines Systems
Engineering as ” An interdisciplinary approach and means to enable the realization of
successful systems [10].” An important note is that attention must be devoted to the
entire life cycle of the system, or ”from cradle to grave.” The system, comprised of
a collection of hardware, software, people, facilities, and procedures [10], begins as
a theoretical concept in the eyes of users or stakeholders, and from that idea, needs

are defined, a system is developed, then used operationally, and finally retired or

14

disposed of. Systems Engineering is all about addressing this whole life cycle, and
there are many strategies or techniques to accomplish this task. Figure [7] shows the
traditional ” Vee” model, commonly taught and used for major Department of Defense
and NASA acquisitions [I0]. Time proceeds from left to right when reading the Vee
process and starts at the top left by defining the stakeholder’s needs. From there,
the design process moves to system-level requirements and further down to a detailed
design with subsystem-level requirements. From there, the process begins integration
and qualification activities by assembling lower level subsystem components into their
parent systems and then testing these systems, otherwise known as verification. After

verification, the system is validated and the original stakeholders begin to use the

system.
Concept Management Operations & Changes &
Exploration Plan Maintenance Updates

Concept of System Validation Strategy / Plan System
[3

Operations Validation

System System Verification Plan System
[< >

Requirements Verification

Subsystem Subsystem Verification Plan Subsystem

Design Verification
i Unit Test Plan
?:)ee:ii"g;and LR EEEY > Unit Testing

Component Implementation

Time

Figure 7. Systems Engineering ” Vee”

Traditionally, the Systems Engineering process used a ”document-based” ap-
proach, where documents are the primary artifacts available to stakeholders [I1].
These documents include requirement and traceability matrices, interface documents,

concept of operation documents, and other unique documents in a wide variety of for-

15

mats, such as Microsoft Excel sheets, Adobe PDF documents, Microsoft PowerPoint
presentations, and digital drawings. As systems become more complex, the tradi-
tional document-based approach becomes challenging to maintain. Each document is
manually generated, so file management and version control becomes problematic. It
is difficult to know for sure if something is the current version or if it has been subse-
quently updated but located on some other file system or storage drive. Furthermore,
any changes in one document, drawing, etc., must be also made in any other document
that uses that same item. This system is prone to errors, inconsistencies, and diffi-
culties maintaining an accurate representation of the entire system. MBSE provides
a solution to these increasingly relevant problems. In MBSE, a system model rep-
resents the system and any information needed for documents can be found within
this model. The model also makes it much easier to maintain consistency. If the
modeler updates a component or interface in one area, it will be updated throughout
the system wherever it appears. Traditionally, acquisition programs reviews will still
require paper documents, but the necessary information for those can still be found
within the system model during the transition from documents to system models.

MBSE requires a modeling language, a modeling method, and a modeling tool [I1].
In this thesis, those are respectively the Systems Modeling Language (SysML), the
Object-Oriented Systems Engineering Method (OOSEM), and the Cameo Systems
Modeler tool.

SysML is a standard modeling language, which added systems engineering func-
tionality to the Unified Modeling Language (UML) that has been used extensively in
Software Engineering for decades [11]. SysML provides a language, or the definitions
and notations for nine different diagram types to describe a complex system, many
of which will be used in this Reference Architecture. SysML is expressed graphically

through those diagrams, listed in Figure |8 to show various system viewpoints. For

16

example, a Block Definition Diagram (bdd) expresses system structure, and an Activ-
ity Diagram can show specific system activities. Within ”blocks”, further detail can
be expressed on an Internal Block Diagram (ibd). Further explanations will accom-
pany their respective diagrams in Chapter [[V], but for now, it’s important to know
that SysML provides the language and is built into the modeling tool, described later
in this chapter.

The modeling method is the specific methodology used to ensure important design
tasks have been accomplished and provides the general guidance, processes, or steps
for the system design. This paper will focus on OOSEM, but there are other popular
methods, such as the Weilkiens System Modeling (SYSMOD) method [12] and the
IBM Telelogic Harmony-SE method [13].

SysML
Diagram
A
Behavior Requirement Structure
Diagram Diagram Diagram
1% A
Activity Sequence Stal_e Use Case B!O?.k Internal Parametric Package
. f Machine A Definition Block ; .
Diagram Diagram . Diagram A B Diagram Diagram
Diagram Diagram Diagram

Figure 8. SysML Taxonomy

OOSEM uses SysML in a top-down, model-based approach that leverages object-
oriented concepts with traditional systems engineering methods to architect more
flexible and extensible systems that can evolve with technology and changing re-
quirements [14]. OOSEM was developed in part by Lockheed Martin Corporation as

a method to capture and analyze requirements of complex systems, integrate with

17

object-oriented software and hardware, and support system-level reuse and design
evolution [15].

The primary OOSEM activities are similar to those in the traditional ”Systems
Engineering Vee” as described previously and are accomplished in an iterative fashion
[16]. Similarly to the ”Vee” method, the traditional technical management processes
are still applied at each iteration.

The primary OOSEM steps are as follows [14]:

1. Analyze Stakeholder Needs: Capture the "as-is” system and mission en-
terprise and identify gaps or issues. The ”as-is” depiction helps develop the
"to-be” system, and the gaps or issues can help drive mission requirements
for the new system. OOSEM frequently uses measures of effectiveness for the

primary mission objectives identified in this step.

2. Define System Requirements: Once the ”as-is” system is defined and pro-
duces Mission Requirements, the system is modeled as a "black box” in a Mis-
sion Enterprise model. For example, instead of going deep into subsystem-level
detail on a CubeSat, the entire CubeSat will be a ”black box” that interacts with
ground stations, other satellites, and the environment. This ”black box” model
allows for system-level activity diagrams and use cases to show how the ”to-be”
system will support the mission enterprise. This step helps derive system-level

functional, performance, and interface requirements.

3. Define Logical Architecture: A ”logical” architecture is created that cap-
tures key functions in logical blocks, allowing for specific components to be

chosen later in place of the logical depiction.

4. Synthesize Candidate Allocated Architectures: From the logical architec-

ture, create potential physical instantiations using value properties and selected

18

components. Each component at this stage is then traced to system require-

ments in table or matrix form.

5. Optimize and Evaluate Alternatives: Trade studies or other analysis is
conducted at this step among the candidate architectures. Parametric diagrams
within the model or integrating other tools can simulate system performance

with the chosen components so alternative solutions can be compared.

6. Validate and Verify System: Once a candidate architecture has been chosen
from the alternatives, the system needs to be validated and verified to ensure
the requirements are being met and that stakeholder needs are satisfied. This
step uses inspection, demonstration, analysis, and test activities to validate and

verify the system.

Finally, the modeling tool is how the language and method get put together. The
modeling tool is a critical piece of software that builds an underlying model of the
system that can be used to display many different viewpoints or diagrams, depending
on what is needed. The system model in a modeling tool is comprised of model
elements and relationships between those elements, and from those, diagrams can
be generated. When the source element or relationship is modified or deleted, that
change gets carried out throughout the entire model, in any and all diagrams those
elements or relationships appeared. This effort utilized the Cameo Systems Modeler
tool from No Magic Inc., but the process is tool-agnostic. Other tools are available on
the market to accomplish the same goals with different user interfaces and feature sets.
The Cameo Systems Modeler tool will be shown in model screenshots throughout this

thesis.

19

2.4 Reference Architectures

Complex systems require detailed architectural planning early on in the design pro-
cess. The Department of Defense (DoD) attempted to manage the “Enterprise-level
Architectures” and “Solution Architectures” throughout the department by publish-
ing the Department of Defense Architecture Framework (DoDAF). DoDAF defined an
architecture as a “fundamental organization of a system embodied in its components,
their relationships to each other and to its environment, and the principles governing
its design and evolution over time [I7].” This concept appears reasonable, but system
architects are not always available for every project that could benefit from a de-
tailed architecture, especially in an academic environment. Reference Architectures
help alleviate that problem by consolidating subject matter expertise and previous
relevant architectures into digestible models that system designers can benefit from
when creating a Solution Architecture [I8]. The DoD saw the benefits of Reference
Architectures and put out a Reference Architecture Description in 2010, describing
them as “an authoritative source of information about a specific subject area that
guides and constrains the instantiations of multiple architectures and solutions [19],”

as shown in Figure [0

| Reference Architecture

Guides and constrains
the development of

Input for

Stakeholder Solution |
Requirements Architectures J

Figure 9. Reference Architecture Purpose

Robert Cloutier suggests 2 key principles for Reference Architectures [18].

20

1. Principle 1: A Reference Architecture is an elaboration of company (enter-
prise) or consortium mission, vision, and strategy. ... facilitates a shared under-

standing about the current architecture and the vision on the future direction.

2. Principle 2: A Reference Architecture is based on concepts proven in practice.

Preceding architectures can be mined for proven concepts.
Finally, Reference Architectures should have at least the following elements [I8]:

1. Strategic Purpose: Goals, objectives, and a specific purpose or problem to

be addressed

2. Principles: High-level foundational statements of rules, culture, and values

that drive technical positions and patterns

3. Technical Positions: Technical guidance and standards that must be followed

by solution architectures (maybe data vocabulary/ data model)

4. Patterns (Templates): Generalized representations (e.g., Viewpoints, Views,
Diagrams, Products, Artifacts) showing relationships between elements speci-

fied in the Technical Position
5. Vocabulary: acronyms, terms, definitions

In summary, Reference Architectures can help systems engineers by providing
a template, developed from years of experience, to aid in the systems engineering
process. From the literature, it is clear that a Reference Architecture would be

particularly useful for teams designing a CubeSat.

21

2.5 Existing Work

There are many examples of Reference Architectures used in the commercial sec-
tor, but this section will focus on Reference Architectures that were clearly relevant
to this effort.

First, the Small Unmanned Aircraft System (SUAS) Reference Architecture de-
veloped at AFIT will be investigated. This is a relevant example as it fulfills the
same general goals as the CubeSat Reference Architecture; namely, that it is for use
in a design course series and is intended for students to use as a template for their
design efforts. This SUAS Reference Architecture was started before this CubeSat
effort and provides a useful baseline and inspiration, even if it is for a different do-
main. AFIT professors Dr. Jacques and Dr. Cox developed this architecture using
Cameo Systems Modeler to describe a generic SUAS, focused primarily on specific
product output for the SUAS specialization track [20]. The SUAS Reference Archi-
tecture contains a Basic Ground Station Model, a Basic Multi-Rotor System Model,
a Component Library, and sample build for a fixed-wing vehicle using the architec-
ture. The SUAS Reference Architecture is designed to allow students to easily build
to a design specification from COTS components in the Component Library and test
those designs using built-in parametric diagrams. These concepts will be applied to
the CubeSat Reference Architecture as well, adapted for use in the spacecraft design
course series.

Jacques and Cox focused on the SUAS culture of rapid prototyping, and the
Reference Architecture allows for designs to be developed at a much faster pace.
The common template and vision provided through the model helps interdisciplinary
teams design, build, and test SUAS systems with more time spent on producing a
quality product, and less time spent designing the entire model from scratch [20)].

Jacques and Cox captured their own extensive SUAS experience into their Reference

22

Architecture, and the model will continue to be improved over time. Currently, it is
being improved to streamline the cumbersome DoD Cybersecurity Risk Assessment
process, using model elements to fill out required forms. The component library will
also continually evolve as COTS components change. Figure|[10[shows a small section
of their Component Library, providing blocks with value properties and ports (not
displayed) to start from. Figureshows the SUAS Reference Architecture’s top level
organization, which this Reference Architecture will be modeled after for consistency.
The component library, parametric diagrams, and general organization are useful in
the development of the CubeSat Reference Architecture, but the spacecraft design
course series has some unique differences that must be considered, such as instructor

preferences and differing model scopes.

23

Payload components

«block»
Video Transmitter

«block»

Video Receiver

values
Voltage required : V: voltage[volt] = 12.0V {unit = volt}
Current draw : A : electric current[ampere] = 1.0 A {unit = ampere}
Freq : GHz : frequency[gigahertz]{unit = gigahertz}
Make and model: String
Version number : String
Country of Origin : String

values

Make and model : String
Freq : GHz : frequency[gigahertz]{unit = gigahertz}
Version number : String

Country of Origin : String

«block»
Payload Deployment Mechanism

Ordinance Self Destruct Package

«block»

«block»
Gimbal

values
Max current : A : electric currentfampere]{unit = ampere}
Make and model: String
Digital : Boolean = false
Voltage Req'd : V: voltage[volt}unit = volt}
Version number : String
Country of Origin : String

Software
Make and model : String
Version number : String
Data link: String

C2 Link : Encryption Type
Encryption Type : String
Country of Origin : String

values

«block»
Camera

values
Ext power required : Boolean= true
Voltage req'd : V: voltage[volt] = 5.0 VV {unit = volt}
Current draw : A : electric current[ampere] = 0.5 A {unit = ampere}
Horizontal lines : Integer
Vertical lines: Integer
focal length : m: length[metreJunit = metre}
Make and model: String
Version number : String
Data link : Camera Data Link
Encryption Type : Encryption Type
Country of Origin : String

values
Make and Model: String
Number of axes : Integer
Version number : String
Country of Origin : String

Figure 10. SUAS Component Library

pkg [Package] 2 - SUAS Model Template] SUAS Model Organization])

] —— 1
2 - Behavior 3 - Structure 4 - Analysis
1 - Requirements
[] [3])
UAV Requirements | | GCS Requirements Use Cases UAV Environment PCSRA Score Instances
Mission Requir Di tati Activities GCS Actors
5 - COTS UAS Use ption Request G t

Figure 11. SUAS Organization

24

In the CubeSat domain, Kaslow and a group of Subject Matter Experts built
a CubeSat Reference Model (CRM) as part of a partnership between the Object
Management Group (OMG) and the International Council on Systems Engineers
(INCOSE). The CRM was intended to help CubeSat developers by providing logical,
reusable architecture elements at a high level [21]. Some sample diagrams are provided
in their interim status updates [21, 22| 23, 24, 25| 26], but the Cameo model itself
was not available to investigate. This CRM describes three levels of architectural
foundation that are necessary to capture the whole domain: the enterprise level,
the space and ground segments, and the space and ground subsystems. Figure

indicates the structure for the CubeSat domain as described by Kaslow et al.

bdd [Package] L0_Domain pkg [CubeSat Domain bdd]J

Cube Sat Domain

env const crm,I

External Environment ’Emmal Constraints i %
CubeSat Reference

Model Stakeholder

Cube Sat Mission Enterprise

y : : :
SO IND RS D R O O R S SO e B e

| ss | gs] gss tids |

| [Space Seg G d Seg “ : G d Station Services | | Transport, Launch, and Deploy Services | '

|| |

I 7 | |

| sat [1 | Provided to CubeSat Project |

| CubeSat o T e e e T T e
|

|

' | =
I

: Developed by CubeSat Project |

CubeSat Mission Stakeholder

Figure 12. CRM CubeSat Domain

Kaslow et al. used a block definition diagram to demonstrate the hierarchy of
elements within the domain. They depict the CubeSat Mission Enterprise as being

directly composed of a Space Segment, a Ground Segment, Ground Station Services,

25

and Transport, Launch, and Deploy Services. Furthermore, they identified what must

be developed by the CubeSat Project in greater detail, as shown by Figure

Lifecycles CubeSat Reference Model Mission Stakeholders
Concep.tion through A model that can be used as a Needs
retirement starting point for a mission Obiectives
specific CubeSat model o) :
easures o
7} Effectiveness
Phases of Constrains
Operations
Launch / Foundations \
Early ops INCOSE Systems Engineering Handbook [12]
Normal ops NASA System Engineering Handbook [15]

Applied Space Systems Engineering [16]
Space Mission Engineering -The New SMAD [17]
CubeSat Mission Design Based on Systems
\ Engineering Approach [18] /

Degraded

Figure 13. CRM Scope

Kaslow et al. described all of the CubeSat subsystems and provided Block Defi-
nition Diagrams for the major views of a CubeSat, including each mission segment,

as shown in Figure [14] for the Ground Segment and Figure [15|for the Space Segment.

bdd [Package] Structures pkg[Ground Segment Structure bdd |J
- .
ps sgc net fcit
Plan and Schedule Subsystem Space-Ground Network Subsystem Facilities Subsystem
Documentation = “Coordinate “m”"m” Documentation = "Provide Documentation = “Provide an
spacecraft activities, e.g I rrdalion = Trovide the network connectivity environment for ground
mission data collection, he = ':"m among the ground system resources "
spacecraft state of health, and communication subsystems and external
spacecraft maintenance the spacecraft. networks."
Coordinate shared e
use, e.g. spacecraft - ground
communications.”
gec mdp mad
et 3 Ground Equipment Control Mission Data Processing Mission Data Dissemination
Sp raft C Subsy Subsystem { Subsystem e s-btysgll §
Documentation = "M onitor | [Documentation = "Monitor Documentation = "Generate Documentation = “Disseminate the
spacecraft state of health and and control the ground the mission data products mission data products and
command and track the spacecraft” | |equipment” from the mission data.” mission data to the stakeholders "

Figure 14. CRM Ground Segment

26

bdd [Package] Structures pkg[Space Segment Structure bdd ,U

Space Segment

pay

Mission Payload

Documentation = "Total
complement of instruments
carried by the spacecraft to
perform the mission."

Communication
Subsystem

Attitude Determination and
Control Subsystem

the communication link
between the spacecraft
and the ground system
or with other spacecraft."

Documentation = "Provide

Documentation = "Determine the
spacecraft rotational motion (i.e.,
attitude/orientation). Maintain or

re-orient the spacecraft.”

cdh

Command and Data Handling
Subsystem

gnc

Guidance, Navigation, and
Control Subsystem

Power Subsystem

Documentation = "Generate,
regulate, store, and distribute
power to the spacecraft."

thrm

Thermal Subsystem

Documentation = "Regulate
spacecraft temperatures to

Documentation = "Receive, store,
process, and distribute the
uplinked commands from the
Communication subsystem.
Collect, store, process, and

|downlink the mission data and

spacecraft telemetry through the
Communication subsystem "

Documentation = "Determine the
spacecraft translational motion
(i.€., position and velocity).

ensure operability."

Spacecraft Bus

|Maintain or change the

spacecraft orbit and trajectory.”

sm

Structures and Mechanisms
Subsystem

ro

Propulsion Subsystem

Documentation = "Provide,
monitor, and control
spacecraft thrust."

and subsystems.”

Documentation = "Provide mechanical
support and house spacecraft payloads

Figure 15. CRM Space Segment

Kaslow et al. determined that this logical architecture would provide guidance

for CubeSat developers to begin to formulate their own mission specific architectures,

knowing that their model did not have and could not have the specificity required

to support every type of mission. It provided a top-level guide to how a CubeSat

enterprise is organized, and some of the external stakeholders as well, as shown in

Fig Their model is a starting point for mission specific teams to incorporate their

unique knowledge to formulate their own architectures.

27

uc [Package] _Conference Views [Stakeholder Overview LI

CubeSat Domains

|

Stakeholders ‘

T T L | 4
|
2 Regulatory
Agencies
«Stakeholders «Stakeholders «Stakeholders S ders »
Launch Service| Procurer | Communication Service | Sponsor End User
Integrator Integrator

uS;ukeholdefn «Stakeholders xs;akenulden «S{-u keholders «Stakehokders «S;ukenuldern «Stakeholders

Tester Developer Project Supplier Project FCC 1TV
Engineer Manager

Figure 16. CRM Stakeholders

After investigating the CRM status updates, however, the CubeSat Reference
Model was missing much of the subsystem-level details that was included in the SUAS
Reference Architecture. A thorough reference architecture in this domain ought to
include the high-level documentation and views from the CRM and the low-level
component library and functionality of the SUAS reference architecture.

Several other gaps exist that will be addressed in this thesis effort. First, the
CRM is not designed for outputting traditional documents for system level reviews.
There is no easy way to generate a Concept of Operations (CONOPS) document or
Operational Requirements Document (ORD), for example, and that is a desire for
an AFIT CubeSat Reference Architecture. Second, the CRM does not appear to
have a component library or a generic, intuitive system that can be easily adapted
by students new to MBSE. Finally, the CRM does not appear to have sufficiently
detailed value properties for the system to be useful for detailed mission analysis
using MATLAB and STK. Students in the AFIT course series must design down to

a lower level of detail with many value properties for each subsystem in order to

28

perform the required analysis and calculations. The CRM is quite useful though in
examining what subject matter experts deem important for a CubeSat model and for
their various subsystem internal block diagrams.

Another Reference Model that was investigated was the satellite model by Sanford
Friedenthal [27]. In his book, he walks through his version of a CubeSat model for the
"FireSat II” mission, also using the OOSEM methodology and Cameo Systems Mod-
eler. His book provides helpful diagrams and best practices and provided inspiration

for this Reference Architecture.

2.6 Validation Tools

When preparing to develop the CubeSat Reference Architecture, a Digital En-
gineering (DE) Validation Tool from SAIC was made available [28]. This free tool
was developed by SAIC and is provided free to the public as a set of validation rules
and customizations for Cameo. SAIC states ”Our free system model validation tool
guides modeling consistency to reduce errors, aid analyses, and improve quality.” This
appeared to be a useful addition to this CubeSat Reference Architecture, so it was
closely examined.

SysML provides a vast array of modeling options and styles, and the SAIC DE
tool aims to limit the language and standardize modeling techniques. By using this
tool, a team can ensure that each team member is using the same diagram types,
the same flow structures, the same definitions, etc., all of which align with the goals
of a Reference Architecture. However, the strict limits on SysML diagrams and
modeling techniques did not match how AFIT students learn or have practiced in
their preceding courses. In a commercial company with a specific modeling culture,
this DE toolset would be more useful to get engineers on the same page. Their

engineers may have come from different modeling backgrounds and it is important to

29

establish a common modeling style, but for new modelers who just learned the basics
of SysML, this tool was too restrictive and unnecessary in this author’s view. Students
using this model also all learned SysML from the same institution and already have
a relatively common modeling vocabulary and level of expertise.

While the DE toolset was not fully used in this edition of the CubeSat Reference
Architecture, the tool could be much more useful if AFIT develops its own style guide
and best practices. If there is an agreement on SysML usage as an institution, the
rule set can be modified and improved to incorporate these practices. However, the
rules as presented were too restrictive for the primary audience using this CubeSat

Reference Architecture.

2.7 Document Generators

One desired feature was the ability to automatically generate usable milestone
documentation entirely from model elements. Historically, students took screenshots
of diagrams and exported lists of requirements to Microsoft Excel to edit, manipulate,
and format for usage in formal documents. This has proven to be a problematic
process. For example, once a team member exports a subsystem requirement list
to Excel, the source of truth becomes that Excel sheet, requiring the team lead
to always compare the names, IDs, and details of requirements between different
documents. The CubeSat model previously used in AFIT’s first spacecraft design
course provided a starting point to determine which model elements were important
for the key documents in the early stages of a system design. This model featured
package diagrams with views and viewpoints pointing to model elements, and used
the "Document Preview” plugin to pull model elements into an html file. Figure
shows one small piece of the document generator for the Concept of Operations

(CONOPS), and Figure [18| show what this plugin displayed as the output.

30

package 3;10 - CONOPS Document Template[CONOPS Document]J

© «Note»

' Docuiments |

«view» ED| wexposer -, . «Notey
100 L — > «Metalnfo» Faculty SpA;\msor Rep: Sign/al\!ure: .
CONOPS Document Title Page ; . f . : 1 :
= . “for CONOPS' - - kexposey. ..,
oS T T T T T T TP N
y - 1. Mission
! «conform» [iewpoint» " Overview :
””.Ir;’:‘:asgl::::: » «viewpoint» [
. Section 3 :
. Jeconforms - - . Simple o))
" wiew | Paragraph S :
. .| 101 Mission Overview T
. 08 " - " . «conform» «iews =
. - . «Msn_Need» " 113 OV1 - High
«iews [X] «exposen | Mission Need . 0(;(:ew: = Level
1021.1 - ; Statement & s e‘m Operational
.| Mission Need oncep L .| Concept Graphic
- ..«expose» «Msn_Context» e Tows =] é expose»
«view» El-"=" Operational 107 3.1 Concept . N .
1031.2 Context S P «©Xpose” (Noten \
Operational §
rgomen - 34 .C.On.?PP! -~ - OV1High-Level - -
- Overview Operational
«viewr = : : ' Concept
| 10832 «éxpo::e‘»r | «system») : Graphic
Space Vehicle | — —] Firefly Space
. Vehicle
«view» = : . : : : :
1109 3.3 Orbit & “expe sep | «block» . IR
Constellation Sl B Constellation | . '
«views m|
[e 24 «expgse» | «system» I
Launch =1 X Fal 9 : :
Vehicle B ekl TR
7777777777 «view» EL |- [. . .
1 I poi ; ; S | 111 3.5 Mission 5 «system>
point: «viewpoint» 2. Reference - A gy N
: N Operati g
| Grouping Ordinary Documents] . : pera °l15. 91 Firefly Mission Operations
: : T«cor?form» . o D . «viewy [y .
1 . - - - tem»
«iew»] ¢ : ' «N9le» 1123.6 wexpose» «sys|
‘ 104 Reference -, 5?,, 2 List of Grou.nd - Pg McC3 ReT
1| Documents pos Reference. |0o Staton | Sy
|

Figure 17. CONOPS Document Generator

31

«Ni

D:

Chapter 1. Mission Overview
Table of Contents

e1.1.1 Mission Need
e 2. 1.2 Operational Context

1. 1.1 Mission Need
Future US DoD systems and units will require precise Position, Navigation and Timing (PNT) solutions that do not depend on the Global Positioni
2. 1.2 Operational Context

A LEO constellation of satellites will continuously emit a “beacon” optical signal while simultaneously transmitting an RF signal containing the sa
user’s location. That location is then used to update the end user’s navigation system. Command and control of the satellite constellation will be

Chapter 2. Reference Documents
¢ [1] Firefly Mission Capabilities Document, v. 2, 20 February 2019 [2] Firefly Stakeholder Analysis Report, v. 2, 20 February 2019 [3] Firefly

Chapter 3. System Concept
Table of Contents

1. 3.1 Concept Overview

2. 3.2 Space Vehicle

3. 3.3 Orbit & Constellation
4. 3.4 Launch Vehicle

5. 3.5 Mission Operations
6. 3.6 Ground Station

Figure 18. CONOPS Document Generator Output

This was a useful start, as it used model elements to generate documentation, but
there were several issues with this method. First, this plugin has been unreliable.
Most students have trouble getting it to work at all, and the pdf functionality seems
to be broken in recent versions of Cameo. As shown in Figure the numbering
and organization was quite frustrating to deal with. The document generator was
difficult to tweak, as it determined the document order based off view and viewpoint
IDs, not based on the layout of the diagram or any other easy way to reorganize or
add new elements. Figure [L8 shows that the html file pulled text from the model, but
customization and formatting was poor. In practice, users had to just copy and paste
this html file into Microsoft Word and then spend a lot of time properly formatting
it so that it was presentable and properly formatted and polished. Any changes to
the model required all this work to be done over again unless the user wanted to
individually copy and paste text from the model for the document. Finally, this is

a plugin in beta, and seems to be unavailable for the latest service pack of Cameo.

32

These were useful though to determine the content and order of each document, but

this thesis will propose a different solution for generating documents.

2.8 Summary

This chapter discussed the CubeSat context and explained the necessary MBSE
and OOSEM concepts to understand the rest of this thesis. After the MBSE language,
method, and tools were explained, Reference Architectures were defined, providing a
template for the modeler to start from. Current Reference Architectures were then
examined, including an AFIT-developed SUAS architecture and two existing CubeSat
Reference Models. Gaps in these Reference Architectures were then identified that
this thesis will attempt to solve. Next, a Digital Engineering Validation Tool was
explored to determine its utility in this Reference Architecture. Finally, previous

document generators were discussed to highlight what this thesis aims to improve.

33

III. Methodology

3.1 Overview

Chapter [[1I] describes the methodology for answering the research questions posed
in Chapter [The status quo will be described and design decisions will be discussed
for the creation of the Reference Architecture. The methodology for getting feedback

and validating the model will also be described.

3.2 Status Quo

As discussed in Chapter [[j the Reference Architecture is intended to improve
CubeSat system designs by providing a starting point and a framework that guides
teams through the entire systems engineering process. The tool will have AFIT
students in mind with some course-specific features, but will also serve as a general
CubeSat Reference Architecture outside of AFIT. To understand the organization
and unique features of this Reference Architecture, it’s helpful to understand the
primary goals, inputs, and outputs of the course sequence.

At AFIT, the first course starts with teams given a Mission Capabilities Document
(MCD) for a fictional or real mission, which outlines the ”Mission Need Statement,”
”Operational Context,” and a set of required capabilities and design constraints.
From this set of inputs, students develop stakeholder concerns and needs, perform
trade studies, write a Concept of Operations (CONOPS), and finally develop a set
of mission requirements. These artifacts are carried into the next course, where
system level requirements are defined and a physical structure is designed. Finally,
in the third course, students take those system-level requirements and further define
subsystem-level requirements and develop test plans to verify those requirements.

These courses are intended to flow together, and this Reference Architecture will help

34

by providing the model framework to carry between and support all three courses.
Throughout the course sequence, there are also milestone reviews and stakeholder
documentation requirements to fulfill.

Students in this course sequence use the textbook Space Mission Engineering: The
New Space Mission Analysis and Design by Wertz, et al [5]. Wertz focuses mainly on
the requirements definition and validation portion of the Systems Engineering process,
so other more general Systems Engineering texts were consulted to supplement Wertz,
such as those by Friedenthal [29], Buede [10], and Maier and Rechtin [30].

The Space Vehicle design sequence, as taught by AFIT, has one primary input, the
MCD. From there, the following outputs are generated as part of the process. Each

report, trade study, review and artifact will have a place in the Reference Architecture.

35

Reports Trade Studies

Mission Capabilities Document Constellation Trade Study
Stakeholder Analysis Report Delta V Analysis
Concept of Operations Launch Vehicle Trade Study

Space Vehicle Requirements Document | RF Link Budget Analysis

Operational Requirements Document Mass Budget

Subsystem Test Plans Power Budget
Subsystem Test Reports Cost Budget

Flight Readiness Review Report Schedule

Reviews Other Artifacts
Mission Concept Review Cameo System Model
Preliminary Design Review Digital Drawing
Critical Design Review STK Simulation

Test Readiness Review OV-1 Diagram

Flight Readiness Review

Table 1. Design Outputs

This list is not exhaustive, as differing missions or stakeholders may need different
outputs, so the Reference Architecture is designed to be flexible enough for unforeseen
variations. In addition to these formal documents and reviews, the model itself is
useful for describing the physical decomposition and interfaces of the system. The
model itself holds all the text, figures, tables, and trade studies that are used in the
documents as well. For example, the CONOPS document goes through mission and
fault phases, describing subsystem conditions, detailing activity diagrams for those

phases, and writing narratives to describe activities. These are all contained in model

36

elements, and the document just calls these elements in the appropriate format for
display.

Table [2| briefly outlines what the typical CubeSat development process looks like
[4], and Table [3{shows the process done in the short time frame of the design sequence
at AFIT. This CubeSat design process at AFIT is coinciding with normal academic

instruction and labs unrelated to the CubeSat project, so the timeframes do not cover

the entire nine months.

Step | Project Phase Typical Timeframe

1 Concept Development 1-6 months

2 Securing Funding 1-12 months

3 Merit and Feasibility Review 1-2 months
CubeSat Design 1-6 months

5 Development and Submittal of Proposal 3-4 months

6 Selection and Manifesting 1-36 months

7 Mission Coordination 9-18 months

8 Licensing 4-5 months

9 Flight Specific Documentation Development 10-12 months

10 Ground Station Design, Development and Test 2-12 months

11 CubeSat Hardware Fabrication and Testing 2-12 months

12 Mission Readiness Review Half day

13 CubeSat to Dispenser Integration and Testing 1 day

14 Dispenser and Launch Vehicle Integration 1 day

15 Launch 1 day

16 Mission Operations Variable, up to 2 years

Table 2. Typical CubeSat Development Process

37

’ Step ‘ Project Phase Typical Timeframe

1 Stakeholder Analysis 2 weeks
2 Risk Identification 2 weeks
3 Trade Studies 2 weeks
4 Mission Phases 1 week
5 Fault Management 1 week
6 Concept of Operations 1 week
7 Mission Concept Review Half day
8 Space Vehicle Requirements Document 2 weeks
9 Mass and Power Budgets 1 week
10 Preliminary Design Review Half day
11 Physical Design 2 months
12 Critical Design Review Half day
13 Subsystem Test Plans 3 weeks
14 CubeSat Hardware Fabrication and Testing 3 months
15 Flight Readiness Review Half day

Table 3. AFIT CubeSat Development Process
3.3 Developing the Reference Architecture

As discussed in Chapter [T a similar effort has already been taking place with
Small Unmanned Aerial Systems at AFIT. Those efforts created a Reference Archi-
tecture for a similar design course sequence, so the first step was to explore that
Reference Architecture and get some ideas and any lessons learned from that ef-
fort. Of primary note was their component library, which allows the SUAS designer
to choose from commonly available components to rapidly prototype a new system.
Their organization was also well done, with top-level pages to show internal structures
and a package breakdown to separate Requirements, Structure, Behavior, and Anal-
ysis. Several of these organization practices will be expanded upon in this CubeSat
Reference Architecture.

While not explicitly stated as such, students going through this course sequence
learned the OOSEM approach to modeling systems, so that approach should be used

for this Reference Architecture as well. To bridge the gap between Wertz' Firefly

38

model [5] and the OOSEM methodology, Friedenthal’s text [27] was used as a refer-
ence, as he also uses OOSEM in his approach. Looking at these models provided a
good foundation upon which to start building a Reference Architecture. Wertz had
detailed subsystem breakdowns and relevant calculations, Friedenthal explained the
OOSEM process and how it relates to CubeSat designs, and the SUAS model [20]
helped guide the organizational structure and capabilities of a Reference Architecture.

As this tool is meant to encourage new designs and not stifle creativity, there are
some architectural design considerations when building the Reference Architecture.
How detailed should it be? Should internal block diagrams be filled out? Should sate
machines and mission phase descriptions come fully described? These considerations
are key points of discussion with the faculty that will teach these courses, and these
points will be discussed later. Additionally, the Reference Architecture project used
teamwork and input from faculty, lab technicians, and other students who previously
went through this program.

Once completed, this Reference Architecture would be used from the very be-
ginning of the design course sequence all the way through its conclusion. They will
be given the Reference Architecture file with their mission-specific MCD and some

guidance, and then they design the system from the ground up using that template.

3.4 Instructor Feedback

The primary users of this Reference Architecture will be students going through
the design sequence, but the instructors for those courses need to accept this model
and understand the basics of the Reference Architecture. They will surely be asked
questions about it and they decide what deliverables should look like, so instructor
feedback was crucial throughout the development of this Reference Architecture. At

the very beginning, before beginning modeling work, the three instructors were con-

39

sulted for their desires and expectations and to note any changes in the course series
going forward. Furthermore, once the Reference Architecture was ready for a demon-
stration, they were consulted again, this time providing specific feedback on tables,
traceability matrices, and document composition. This feedback was extremely useful
to keep the Reference Architecture in scope and to ensure it will be useful for the in-
tended users. The instructors do not need to be experts on the actual model, though,
so guidance was provided within the model to help guide students. If students are
stuck and instructors cannot help, they have free reign to tailor the model to meet

the course requirements.

3.5 Tool Validation

Before the Reference Architecture was ready for teams to begin using, a full test
was conducted to validate the tool and ensure everything worked as planned. Grissom-
P is a mission that students were assigned in a previous sequence, and it is also a
real world AFIT mission with requirements and documentation, so it was chosen as
the test bed for this Reference Architecture. It is also a unique mission, given that
it has two distinct and physically separated payloads, so it tested the modularity of
the Reference Architecture. Near the end of the Reference Architecture design pro-
cess, Grissom P was used as an example to run through the Reference Architecture
quickly to ensure each step was working properly. This highlighted several issues that
needed to be fixed before the faculty demonstration, and then, once the Reference
Architecture was ready, Grissom-P was fully fleshed out using the Reference Architec-
ture. This was done by another graduate student, which helped prove that someone
unfamiliar with the architecture could use and understand it.

The ultimate test will be when a new cohort of students use the tool. Lessons

learned from these system designs will improve the model going forward to address

40

any remaining gaps or adapt to changing requirements. This is the whole point of a

Reference Architecture, after all.

3.6 Summary

Chapter described the status quo and inspirations for the Reference Archi-
tecture. Then, the process to create it was described, as well as the process for

stakeholder input and model validation.

41

IV. Analysis and Results

4.1 Overview

Chapter [[V] details the resulting Reference Architecture using the methodology in
Chapter [ITI] The first section will describe the overall layout and navigation of the
model, and then each major section of the Reference Architecture will be explored,
highlighting the most important diagrams and new features. An in-depth help guide
is included in the Reference Architecture file, so this chapter will not serve as a manual

for the tool.

4.2 Organization

The CubeSat Reference Architecture is a large model, so the organizational struc-
ture is critically important. Many users of this model will be new to MBSE or at
least new to Cameo Systems Modeler, and with so many diagrams and packages, it
can be easy to get lost or have trouble finding a diagram that you need. Furthermore,
modelers may prefer different navigational styles. Some prefer visual diagrams, while
others prefer navigating a nested folder structure, while others still may prefer to
directly navigate to a desired diagram with one click from an index. To address these
preferences, multiple ways to navigate the model have been provided. Each naviga-
tion style is based off the four pillars of SysML - Requirements, Structure, Behavior,
and Parametrics [31]. This model uses the term analysis instead of parametrics to
cover more content, but does contain the parametric diagrams to assess system per-
formance. The extra package, called Document Generators, contains templates that
pull information from each of other packages, so it is kept separate.

The standard way is to navigate using the ”Containment Tree,” or Cameo’s File

Tree, as shown in Figure [I9 Notice the numbered packages for the most important

42

packages to guide users to the appropriate section. Note that some packages, such as
those inside the Generic CubeSat Model, include hyperlink icons, informing the user
that those packages are also links to more detailed diagrams. A user can navigate
this tree and find the appropriate diagrams in an intuitive manner. For example, if
they wish to work on the CubeSat’s physical decomposition, they will navigate to
the Structure package and find the CubeSat package within. If they need to generate
some activity diagrams for mission phases, those diagrams will be located within the

Behavior section, and so on.

%
K E 5 wQ o -
[E—[2] CubeSat Reference Architecture

11 - Guidance

[2 - CubeSat Component Library

-] 3 - Generic CubeSat Model

&1 1 - Requirements
&1 2 - Structure
&1 3 - Behavior
&1 4 - Analysis
&1 5 - Document Generators
Index
B[] 4 - CubeSat Physical Models

[ASYS 531 Team Name

] Grissom ProxOps Model

[Grissom-2 Model
[Model Organization

Figure 19. Containment Tree

Some users may prefer to navigate using diagrams instead. This has been built in
to the Reference Architecture by creating top level ”"organization diagrams” for the
most used sections. Figure [20] shows the first page users see when they open up the
model, and each icon within that diagram is hyperlinked to another, similar diagram

at the lower level. These organization diagrams will be detailed in upcoming sections.

43

E— | | _
1 - Guidance 2 - CubeSat Component Library 7
]

How-To Guide | E% AR FORCE INSTITUTE OF TEGHNOLOGY
AFIT-specific guidance CubeSat Component Library
Diagram name: Model Organization
=) Last modified: 1/18/217:23 PM
GubeSat Modeling AFIT Courses Last modified by: skelly

How-To e |

Guide.docx This model is UNCLASSIFIED. |

distribution unlimited.

DISTRIBUTION A. Approved for public release: |

[

AFIT Validation Rules

=
[E— E——]
3 - Generic CubeSat Model 4 - CubeSat Physical Models
1 - Requirements 2 - Structure Grissom ProxOps Model Grissom-2 Model
L o 52 =
3 - Behavior 4 - Analysis
3 e
5 - Document Generators
b
=

Figure 20. Model Organization

Finally, some users may wish to directly navigate to a diagram by name. The
"Index” diagram shown in Figure shows all of the built-in diagrams and tables
that users will be expected to complete during the design sequence, organized by
category. If additional diagrams are created, this index will need to be updated
accordingly. This Index provides a very fast and easy way to open up one diagram

in particular if the user forgot where a diagram was located, for example.

44

3]qE L UONEIIIo/\, SJUSWBINboY WoJSASONG £
S]S8] eIempieH =’
:S]S9) aJempieH

SISATeUY S{UNdn 55
UoneIbalul TN 45
SISA[eUY III0 12

SEATEUY oMo EE

:(sweusbeip oujewesed) %_m%((VD STITEY

SaIpN}S dpell =
‘SaIpMis opel)

UONeZIUEDI) SISATeUY =
SIATEUY

: _o_>m:mm

SO5EUd UOISSI

wmmmo asn

==

$85B(d UOISSIN &5
:saseyd UoIssIp

PPq SISIRUIBIE] UOSSIN

Jqi0

PPq [EUNUIS T pUNoIS S10Wsy E0IN &'
Juswbeg punoin

PPT S[IYSA YoUNET '
:3[0IYydA Yyoune

SUIUOEN SJE}S 1ESAANOSY
(uryym pasui s1eAe| [euonippe) ppa 1eSaqnD %5
Jessqny

PPq JUSWIUGIAUT 1ESaqND =
‘JUBWIUOIIAUT

PPq UeWo([euoneledo %
:ulewoq |euonesado

TX3JUCY UOISSIY poidwis &
X3JU0Y UOISSI [
JIX8Juo) uoissiy

PP IXBIU0Y UOISSIN 5’
ainpnig

mEmEE_zcmm Emﬁ>w

XN

mEmeL_:cwm .:o_mm_s_

XUTEN GO O} SPSoN JoploUaYEls
XUJE}Y SUIBIUCD Of SPSSN JoP[oUaYElS =,
SPSBN JOPIOUBYETS JO ST 1

SUIS3U0Y JI9Y L PUE SISPOYSYETS.
‘SISATEUY Jaployayels

:sjuresjsuo) ubisaq pue sapjigeden vm::cwm_

3[qe] UORejuswna0Q 89In0S
:uofejuaWNo0Q 891N0S

UONEZIUEDIQ SjuSUWeINbay =
sjuswalinbay

Figure 21. Index

45

4.3 Guidance

To assist users who are less familiar with Cameo or MBSE, a full CubeSat Mod-
eling How-To Guide has been included within the model. Users can double-click the
document icon in Figure [22| and open up a thorough guidebook that walks through
each section and each diagram that users can fill out, in addition to guidance re-
garding the new Document Generator feature. The Guidance package also contains a
set of modeling rules and a draft "active validation” profile to help identify common
errors or missing data in the model. Figure 23| shows the structure of the included
modeling rules, intended to keep the model standardized and to prevent common er-
rors. Each of these rules is included in the Rules table with text descriptions. These
are not mandatory to follow and these are only draft requirements created by the
author. A wider conversation is required to establish modeling standards at AFIT,

so these are just ideas to explore at a later date.

= [2] CubeSat Reference Architecture
B[] 1 - Guidance
[AFIT-specific guidance
=[] How-To Guide
[Process
1 Rules
[SysML Diagram Types
(= How-To Guide Navigation
CubeSat Modeling How-To Guide.docx

= - -

Figure 22. Guidance

46

B[Rules
[validation Profile
B2 Rules
-+ [u] Behavior Diagrams
B[Activity Diagrams
[l Activity Diagram Relationship Rules
—[u] Guards
—[u] Input and Output Locations
—[u] Merge Nodes
L— [u] Swimlanes
[l Activity Diagrams General Rules
— [u] Activity Names
— [l Initial and Final Nodes
L— 4] Pin Names
E-[u] Use Case Diagrams
E—EI Use Case Diagrams General Rules
— [u] Actors
—[d Primary Actor Location
— [0 Secondary Actor Location
— [u] Stakeholders
L— U] Use Case Actors
[General Rules
—[u] Diagrams
— [u] Distribution
— 4] Element Colors
— [l Glossary
—[gl ID Naming
—[u] Language and Method
— gl Naming (discuss)
—[u] Packages
L—[g] Units
= [u] Requirement Diagrams and Tables
& [Requirement Diagram/Table General Rules
':IEI Requirement Names
Requirement Satisfaction
=[] Structure Diagrams
[l Block Definition Diagrams
& [Block Definition Diagrams General Rules
[l BDD Ports
[4] Port Naming
[Internal Block Diagrams
E‘!—EI Internal Block Diagrams Relationship Rules
] Item Flows
[4] Port Types

Figure 23. Modeling Rules

In addition to the modeling rules provided, a pared down version of SAIC’s DE
Validation Profile [28] is provided as well. As discussed in section the Validation
Profile does not meet the needs or practices of this model’s intended audience, but
there were several helpful active validation rules that were borrowed. A future effort
may explore this concept further, but for now, roughly a third of the supplied rules
were helpful for this context. Some very helpful rules include those that highlight

when a requirement does not have proper traceability or is missing requirement text,

47

rules that highlight missing elements in diagrams (such as starting and final nodes in
activity diagrams), and a rule that checks to make sure each Value Property has an
associated Value Type and Unit. If a modeler runs the validation profile during the
design process, they may see helpful errors pointing out missing elements, so it does

add some value to the Reference Architecture.

4.4 Requirements

Users will start their design process in the Requirements package. The Require-
ments Organization diagram is shown in Figure [24] which links to each applicable
diagram and provides basic instructions to help users navigate. While the Require-
ments process is not a linear process to be accomplished at one time, it is structured

in the order in which users will likely need the included diagrams.

48

XUJeN uoyeAlaq sjuswalinbay woaysAsqng

a

a|qe) sjuawaiinbay waisAsang

HiE

k']

sjuswalinbay weysAsqns - 2

[

XijeN A3iliqeade. L HIN 0} ¥S
(]

ajqe spuawaiinbay wayshs

HE

E]

sjuswiaiinbay waysAs - 9

xujey Ajjiqeasel) sisjaweled adueulopad Aoy
]

9|qe] siajoweled adueuuiopad Aoy

HhE

o

siajoweled asuewiopad A8y - §

Xijely Aljigeases) sjuswiaainbay uoissIN
u

9|qe syuswainbay uoissiy

H

o

sjuswalinbay uoISSIN - ¢

| I

SPaaN J3pIoYSNE}S 4O ISI

HE

k]

XU3eN GOIN 03 SPasaN Japjoyayels

]

= |

49

XUJe\ SUI32UOY O} SPaaN

XIHEIN SISPIOYSNE}S O} SP3aN I3PIoYSNEIS
L]

spaap Jap|oyaye)s

0 419y pue s1apjoy

-

SuJa2U0Y I3y} pue Siap|oyayels

| I

SISA[eUY Japjoyaye)s - ¢

[

Jusawaje}s pasN UOISSIN
«pPaaN_ UOISSIN»

HE

o

leden pasinbay

alqeL saARoalqQ pue s|eos

esiis

1x8juo) [euonesado
«xejuo)” euonesado»

xipe Ayjigeases) sjurensuod ubisag pue sapijiqeden paiinbay
0

9jqel sjuresjsuo ubisaq

HE

k]

sjujes)suos pue sapijiqedes paiinbay - z

a|qel uoljeusWNd0Q 92IN0S

-

uopeUBWNIO(32INOS - |

I

]

|

Figure 24. Requirements Organization

The Requirements section begins with users creating blocks for their source mate-
rial. This Source Documentation diagram will continue to grow over the course of the
design sequence, but some common CubeSat references are included and attached.
By attaching source material to blocks, as shown in Figure requirements can be
properly traced to the exact source document version. Furthermore, it makes it much
easier for users to quickly see the source documentation, instead of needing to search

the internet based off the source name.

2 Name Owned Element

AFI1 91-217 § Safe d Mishap P tion Prog...
E] AFI 91-217 Space Safety and Mishap Prevention Program pace Safety and Mishap Prevention Prog

= : Block
Cal Poly CubeSat Design Specification.pdf
E] cal Poly CubeSat Design Specification a roly Lubeoat Design speciication.p
= : Block
Attach CONOPS h
EJ Concept of Operations (CONOPS) [Attach your ere
= : Block
Navigating E t Controls and Regulations for Sma...
E] Export Controls and Regulations for Small Satellites avigating Export L-ontrols and Reguiations for sma
= : Block
Replace this MCD.d
E] Mission Capabilities Document (MCD) eplace this o
= : Block
Attach MRD h
EJ Mission Requirements Document (MRD) [Attach your ere
= : Block
NASA CubeSat 101.pdf
2] NASA CubeSat 101 upesat 20%-p
= : Block
NASA Launch Services P - Di d Cubes...
EJ NASA Dispenser and CubeSat Requirements Document unch services Frogram ispenser and Lube
= : Block
] NASA GEVS NASA General Environmental Verification Standard f...
= : Block
NASA Structural Desi d Text Fact f Safety ...
EJ NASA structural Design and Test Factors of Safety for Spaceflight Hardware = - Block ructural Design and Text ractors of safety
TOR-2015-03035_31JUL2015.pdf
£ sMC Compliance Specifications and Standards S3u P
= : Block
Attach SAR hi
] stakeholder Analysis Report (SAR) S . BEICC)CkYOI-Ir ere

Figure 25. Source Documentation

The Reference Architecture assumes that design teams were provided with an
MCD. Given that, users should parse the contents of the MCD into blocks that can
be used within the model. Instructions are provided in the diagrams for how to
accomplish this, but the goal is to have a set of Design Constraints and Required
Capabilities, an Operational Context statement, a Mission Need statement, and a
matrix that traces these new blocks to the MCD. If any changes occur after the

original MCD was parsed, users can generate a new MCD based off these tables using

50

the Document Generator tool. Note also that the tables provided include an ID
naming convention that will be continued when users add additional entries into the
respective tables. Additionally, each table is populated with blocks that contain the
correct modeling "stereotype” so that tables can properly and automatically populate.
Figure [26] shows an example of a Design Constraints table for one class project, and
that pattern repeats for the Required Capabilities table. The tables as provided

only include sample names, as these will need to be replaced as soon as an MCD is

provided.
B EJ Design Constraints Description of Design Constraints if provided
E] DC-1 Operational Payload P-440 UWB Radio Transceiver
Free Flyer CubeSat: 6U CubeSat form factor (objective),
compatible with Planetary Systems Co.p.(PSC) Containerized
£ DC-2 System Form Factor Satellite Dispenser (C SD).

Hosted Payload: 4U form factor

EZ DC-3 Free Flyer Satellite Cost Should not exceed $750K

Satellite command and control will be accomplished via the
MC3 network (Reference MC3 User’s Guide dated 11

] DC-4 Command and Control September 2018). Network may be expanded to include
new Remote Ground Terminal locations. However, these
locations are restricted to DoD locations.

£ DC-5 Launch Rideshare with Host

Should be capable of on-orbit operations for a period of 1
£ DC-6 Expected Operational Period year

(threshold),2 years (objective) after deployed from host.
£ DC-7 Delivery Date January 2022
£ DC-8 Orbit 450km circular orbit with a 55 degree inclination

Figure 26. Design Constraints

The next major step is to perform a Stakeholder Analysis as a team. Figure
shows the structure of the Stakeholder Analysis package, with a package for Stake-
holder Concerns and another for Stakeholder Needs. Design teams will first brain-
storm a list of Stakeholders and document whatever concerns they may have in the
form of ”comments” in Cameo. Some generic Stakeholders are provided as well as
generic ”concerns” that users should edit and add to for their unique program. The

issue with these Stakeholder Concern ”comments” is that requirements cannot be

51

traced directly to them. To address this limitation, Stakeholder Needs are then cre-
ated as blocks that represent those previously created concerns. Several concerns
may address the same topic, so one Stakeholder Need block can be created that maps
to each relevant concern. Figure shows a portion of the matrix that will auto-
matically change after the previous steps. By mapping the new Need blocks to the
Concern comments and to their applicable stakeholder, the user can see where each
Stakeholder Need comes from. Once the team has a complete list of Stakeholder
Needs with traceability back to their concerns, the Stakeholder Analysis Report can

be generated. The Document Generator process will be detailed later in this chapter.

B[] 3 - Stakeholder Analysis
B[] Stakeholder Needs
.7 Relations
List of Stakeholder Needs
"=, Stakeholder Needs to Concerns Matrix

"= Stakeholder Needs to MCD Matrix
—E] SN-1 FCC Compliance
—[E] SN-2 Resolution
—EJ SN-3 10C
—[E] SN-4 Schedule
—E SN-5 Budget
—E- SN-6 Downlinking
L] SN-7 Commanding
=[] Stakeholders and their Concerns
@ Stakeholders and Their Concerns
£ Another stakeholder

£ Developer

£, End User

£ Ground Stations

£ Integrator

£ Launch Service Provider

£ Mission Operations

l—@ Mission Operations concern
%S Product Line/Manufacturing

£, Program Office

%S Regulatory Agencies

£ Safety

£ Sponsor

£, Testing Agency

Figure 27. Stakeholder Analysis

52

Legend
/' concern
/" Stakeholder

E [Stakeholder Needs

= [Stakeholders and their Concerns
B £, Another stakeholder
[Another stakeholder concern
[yet another stakeholder concern
B £, Developer
™ Another stakeholder concern
= % End User
[End user concern
™ Meet IOC date
[Meet needed resolution
= 2., Ground Stations
™ Ground station concern
B £, Integrator
[Another stakeholder concern
B £, Launch Service Provider
[Launch Service Provider concern
B £, Mission Operations
[Mission Operations concern
=] %S Product Line/Manufacturing
[Product Line /Manufacturing concern
= ¥ Program Office
[Program Office concern
= 2. Regulatory Agencies

B £, Safety
™ Safety concern
B £, Sponsor
[Another stakeholder concern
[Deliver on time
™ Deliver within budget
[Meet I0C date
B £, Testing Agency
[Another stakeholder concern

[System must comply with FCC regulations.

N[SN-1 FCC Compliance
NI SN-2 Resolution

= sn-3 10C
N1 SN-6 Downlinking
NI[] SN-7 Commanding

NI SN-4 Schedule
N SN-5 Budget

SN

3 v L L

Figure 28. Stakeholder Matrix

53

The remaining sections within the Requirements package will be completed later
in the design sequence. It is structured using a tiered Requirements convention, where
teams start by generating a list of Mission Requirements, then a list of System or
Space Vehicle Requirements, and finally a list of Subsystem Requirements for each

subsystem. Each tier is organized in a similar fashion, but with different stereotypes

and some different data fields. Additionally, template requirements for each tier have
been provided, as well as some example entries in other data fields to show as exam-
ples, as shown in Figure 29| Each tier of requirements also comes with a traceability
matrix for users to trace or derive that tier from. Note that the Subsystem Require-
ments table, shown in Figure[30] is further broken out into subsystem categories, with

template requirements for each to get teams started on the brainstorming process.

Name Text Mission Requirement Notes Derived From Traced To Verify Method
=1 MR-1 Risk Probability of success TBD% insert rationale here if needed
£ MR-2 LV Type Probability of success TBD% = Launch Vehicle Trade Study
] MR-3 Coverage Coverage Requirement Text
] MR-4 Schedule Operational within TBD years
1 MR-5 Political Applicable political requirement text
E] MR-6 Commanding Commandable within TBD.
] MR-7 System L/E applicable interface requirements
£ MR-8 Timeliness Timeliness Requirement Text
£ MR-9 Environment any special environment text
B £ MR-10 Performance

=] MR-10.1 Weather Weather requirement text, if applicable

] MR-10.2 Resolution TBD resolution

& MR-10.3 Geo-location Accuracy TBD geolocation accuracy
EJ MR-11 Regulations Applicable regulatory requirement text

Non-recurring STBD M - i
K MR-12 Mission Cost Recurring $TBD Myear SE,S ::;:;:‘f;f:um 5 cost Estimate Analysis
] MR-13 Revisit Time Timeliness Requirement Text
] MR-14 Number of LVs number of LVs requirement text [Launch Vehicle Trade Study
55 MR- 15 Survivability 2::3wahiliry requirement text (radiation belts,
] MR-16 User Equipment user equipment description
EJ MR-17 Data Distribution Data requirement text
& & MR-18 Orbit Requirements

EJ MR-18.1 De-orbit Requirement de-orbit requirement text

EJ MR-18.2 Transfer-orbit Requirement transfer orbit requirement text
B & MR-18.3 Operational Orbit Requi Timeliness i Text

| & MR-18.3.1 Orbit Plane Orbit plane text (] Constellation Design Trade St
5 MR-18.3.2 Orbit Altitude TBD resolution [Constellation Design Trade St
L MR-3 Coverage

] MR-19 Secondary Missions Secondary Mission text description
1 MR-20 Mission Design Life TBD years
] MR-21 System Availability TBD hours maximum downtime
] MR-22 Number of CubeSat(s) number of CubeSats requirement text
£ MR-23 Development Constraints None
E] MR-24 Data Content, Form, and Format data content, form, and format requirement text

Figure 29. Mission Requirements

o4

2 Name Text Derived From Verify Method Risk
=[] Bus Requirements
B [] ADCS
E] ADCS-1 Mass Mass Requirement Text 2 SR-9 Design and CTest Medium
E1 ADCS-2 Power
=] ADCS-3 Slew Rate
] ADCS-4 Pointing Accuracy
] ADCS-5 Pointing Knowledge
] ADCS-6 Detumble Capability
=[] Bus Software
B E] SW-1 Software Architecture
E] SW-1.1 Data Storage
E] SW-1.2 Housekeeping
E] SW-1.3 Command Sequences
£ SW-1.4 Core Flight Software
EJ SW-2 Operating System
] SW-3 System Management
£ SW-4 Fault Management / Recovery
] SW-5 Timing
[C&DH
[] Communication
[EPS
[GNSS
(7] Propulsion
[Structures
] Thermal
[7] Payload Requirements

HEEBEEEBEEB

Figure 30. Subsystem Requirements

4.5 Structure

After coming up with a list of requirements, teams need to decide on a physical
structure that can satisfy those requirements. Instead of starting from a blank slate,
this CubeSat Reference Architecture provides teams with a generic physical decom-
position for a CubeSat and its various subsystems, as well as related systems, such
as the Launch Vehicle and the Ground segment. Figure |31|shows a high level view of
the areas that the Reference Architecture includes. Each package is hyperlinked to
more detailed diagrams to fill out, and the most relevant value properties have been

included for each.

55

=
@ o8
sainponis
Buls : JojesBaju E e/
ucneoon i uner Lo |- T o
‘sonjen o]
8)s youne 0])e I 0] g y
= Jun)fs:elioplisoo :is
©foig» simg suqeq aoedg asaydsounpeopu3 ung MHMMM_ M:._E_:m_“__wmms : m_mMo:“Mo“
©foig» ©f0ig» ©foig» ©f0ig» S T e |ewusay L aiemyos
'L =1068]u] : S|ESSANDIOILGUINNIEI0), 0 {nem = yunfiemliemod : JOMOdXew T 1
0'} =1962)U] : SeUE|JOIRqUINNIEI0) {em = jun)fiiemliamod : OMOGIGIOBA.,
0°} =Jebejul : pasinbaysequinu {snun 18S8aN3 = Jun} N 0'9 = SHUN J8SBAND : 8ZIs.
{suny = yun}[s/wi]peeds :Aeye eAe {s/u = yunjfsjwpsads : Ae}eP
0'} = [eaY :Aygenas woungl ozeds) {jewiiw = Jun} wWw | = [Wiujeouelsip | uBiey
{is1awolpy = yunjwyeouesip : epminjyuoesuy ©pRoIg» ©RoIGH =)un} W 6€Z = [Wuwjeoueysip : ypIM Sdl peojhed
Q8L = 1PIA01d Youne] : Jepinoidyoune] = jun} wuw 9gg = [wwleouersip : yiBus|
L =1362)u| : sayounEYoIBqUINU = {s1eak = yun}fsseeklown : o
{s2210p = J1un}[sze|op]isoa : Youneiad)sod. JuewuoIiAUT TESEGND |eay :Ayiiqey ﬂf(m 8
QgL =204 1A YoUNET : SpIYRAUOUNE] o sonjen
= JES3nD) HO?3 soav
QI2IYIA youne «sase)ul Jo wejshs»
©pojg» JuswuoIIAUg ©pojg» [[l
ajo1 L>> oune: I
(I ARETC ESeqnD
2
{Bop = yun) Bop 00 = LienBue]sasiBep : Alewouyensy I
{saynuiw = yunfseinuwlew : poyad ey
{s/uni =3in}is/uniipeads SAROIN {69p = un}lsenBue]sseiBep :epnybuoTIeBIE}
JeBeju| : Saue|do.equInu {Bap = unjienbue]saaibop : apmneTyabiey
{Usjewolpy = yunj[unleoueisip :spiple: sanen
3 {Bep = yunjleinbue]seeibep : ejuyelogXEW o
LIy €O =Bums : aweNoe} RSl EEAIREREL P
{Bep = yun} 6ep Z£g0've- = [ienBue]sesibep : epnybucTIEy {6ep =
{Bap = yun} B2p 282 "6¢ = LienBue]saaibap : spieToe) {6ep = yun} 6ap 00 = [renBue]seaibep : sisdeediouewntie a.oH
sonjen {Bap = yun} Bap 0'0 = enBue]ssaBap : NyvY
Tom {Bep = yun} 62p 0'Sy = [xeinbue]saaibop :uogeurjouy eyienes Aejoy Sd9 ypeg ‘suopesedo pue smoy’
e P juswdinb3 Jesn Cisjattiof Sl IR Ul et SR S wopogy | 0| «wpoiay ol 1081g0 sMoys pa Jey) pue “oo]q esudielug
UG {ejewolp) = yun} w 01289 = [wileouelsIp : sixyioleWIES = UOISSI\ 84} UJIM PSIEoO] SI Pal IXBIU0D
0°0 =122y : Aoujuasoe *0 N 84 pepasu se welbelp sy
e ojuo abesoed auy doip pue Besp jsn| ued
S siesn Arewug N0 ujewoq jeuoyeiedo noA pue ‘ee.} JuswuIBIuCO 8y} Ul sebexoed
©ROIH ooy U Bupom paziuebio Aels o} Jaises
LD oRoidy ._ 31 “weiBoid oyads 1ok o} BuLojie}
ﬁ Saunbel SIUL ‘X610 LOISSIU TESEATE
Juswbag ﬂ::?.”v o T uoIssIN urewoq eudyesedo ouauab e Joj ajejdwa) e jsnl si syl
©pojg I
| ——| [Tppq wewoo uossin] ppa

Context bdd

ission

Figure 31. M

56

Figure [32| shows the same Mission Context, but in the form of an internal block
diagram so that various data or signal flows can be shown, highlighting interactions
between the CubeSat system of interest and relevant systems in the overall mission

context. This diagram also highlights key operations and relevant value properties

that add value to this view.

ibd [Block] Mission Enterprise Mission Context |

mission Oparations : Mission Oparations

AN

CubeSat This willneed to be tllored and you should go though the.
xercise of making new object flows 100

+ Operational Domain

rolay Sattolto : Rolay Sattolito [0.]

Detect Anomalies()
Process Telomety()

mission Enterprise : Mission Enterprise

Rocelve Telomety()
GPS : GPS [0.7] | Send Commands()
i] RE
carth:Earth[1] | Torgal dais Mission Planning System : Mission Planning System

contol accsleration)()
harizon tracker ff | €ontol atitude()
s Plan Manewer()
s

chedule MC3 Contacts()

target : Target 0.7]

t ‘"j contol thermal environment()

7136deg
sensorlf

targetLongiudo:
{argotName - Sting

Fllght Dynamic System : Flight Dynamic System

Detomine Atiuce)
fontor Orbit)

+ CubeSat Environment

all : I sonatromt Toormant oy et
9 e & dala i State of Health Report CubeSat

£ [G Subsystom : ADGS Subsystom
- vt
[raiton:aition ot
ol ‘ ‘ 9GS RGT M3 Remete Groun

Solar Radiation]
wn o i
sin u
1 Solat Radiation J
— wraser s |
S for Lo | s Subptom: St Sberien |
ion Operations()
impact iff
g Decamisen
 Space Debris (0.7 | . pink)
L CobsmEny o SemancsioCibes | SO o son Opertors)
V! ‘Send State of Health Report to Mission Operations()
-
; e o
W mchancalll [ottt
Hover anconmancs UHE Antanna Assambly - UHF Antona Assambly
R—— + - AGI Rotaor YAGIUHF Anonna
0 Tolemetry State of Health Report REAQI Ratafor £ YAGH Rotakor
amnaTamp: g
e
o
po olope =040 s

te[Mbps] = 1.0Mops
oW
[megahertz] = 940.0 1tz

7v

®
Jency{megahertz] = 455.0 Hz

a8
M2450CP28

Figure 32. Mission Context ibd

A generic physical decomposition of a standard CubeSat has been included to
help teams stay organized and to provide a starting point to work from. Figure
shows a top level view, with subsystems being rolled up into subsystem blocks.
Each of those subsystem blocks contains more detailed diagrams within for individual

components. Organizing it in this fashion prevents massive, unreadable diagrams

57

from being presented to stakeholders and instead, the specific details for different
components are only shown in the appropriate level diagram. The primary benefit of
this provided physical decomposition is the value properties included in each block.
The pre-built value properties allows for analysis tools to be included in the Reference
Architecture, because the inputs are already defined. The included value properties
also follow a ”camel case” naming convention that reduces errors when they are used
with constraint blocks. Teams can add additional value properties and use them for

analysis, but the provided set is a well-rounded start.

58

{suun 1BS3qNS = yun}shun SAND : 8IS,
{ste|jop = yun}{sIe|jopsoa : 1509

{wesBojpy = yun)[B]ssew : ssew

{nem = yunjfempiomod : semogxew!

{snisje0 = yunj{ojseesbep : dwe Bugesedoxew
{snisieo = yun)[o]seesbep : dwa) Bunesedouiu
{1ejew = yun)wleousisip : MSO

{Lejew = yunjueoueisip : soueysigeldiespunoib
{gp = uunjgp : ebueyIEUAD.

o) =uee|00g : SjBUBIEABIIU

ani) = ues|oog : syyBuBjEAEMPR.

o) = ueelo0g : sjbusjenEUBRID

an) =ues|oog :syibusjeremaniq

{ieppuu = junjfwwileoueysip : ezigi0suss
1860y : Sjexid.

= Junjwwileoueisip : yBuaT|ea0)
nj{wwleouelsip : Jsjeweigainyede

ue uy

{wesBopy = yun)[BxJssew : ssew
{sdg = yun)oes Jad saifglereieiep : eleyEIEaATPURIS
{sdg = yun}oes Jod selAglejereiep : alEEIRAHOS
{nem = yunjfyembiamod : JamoguO

{sdg = yun}[oes Jad seiglejelelep : ejeyuoRoNpOIdEIE
{nem = junj[pembiemod : JoModxew

{nem = yun)pembiemod : JomOdGIOBAE

{10301
Lejoww =
{sdq = yunisdanieleseiep : alexerep

{suun ESAAND = yunjsyun FESBAND : 8z

{em = y1un)emliamod : JomodAgpUEIS. A
sonen
& | Peoied opious RS
{s12110p = y1un}{ssejopliso0 :1s00[EIO) e ©fooia»
{eibopp| = yun} [Blssew : Sse|eio}
{sdg = yunjfoes Jod saikglelereiep : SleNEIRQHOSSNG
{sdg = yun}oas Jod selAglejelelep : S1ENUORNPOIEIREDSIW
{nem = yun)femiomod : Jomodxew
{nem = yunj{yemliomod : Jomoduo
{s)un FESIAND = unjsiun BSITND :
sonen
weysAsqns HATO
«wershsans»
©poig e
{sdqyy = yun{sdqnleteseiep : eleyUOANpOIElEp
I {1em = Junjpembiomod : Jomodxer
{sseljop = Nun){sseloplisod :1500jElal| frem = innibiavCROtSEEEIEE S I
{weibojpf = yun}[Bxjssew : ssepyelo}| {sueyjop = yunj{sie|jop]isoo :1s00€I0}
{s1ojow esenbs = yunj{uw bslezs :uwdy woisAsqns asemijos {welbojp| = yun) [Bylssew : sseeIo),
g «weyshsqns» {sdg = yun}oes Jod selAglelelelep : ejeyUORINPOIGEIEP
=l «ypojg» {nem = yunjinemliemod : Jemogxew
- 1,63 = yunj{dolfpedeo jeey oyads : Jeay oads A (e = yun)nemsemod : JBmOdNGIOBNE|
wﬁ_,o% = Ea_mw_m__w_m_u_ﬁs SED0IE) {nem = 46| od 2l i {syun fBS3AT5 = yunjsyun TESBAND : ezl
(wesbopp = yun} [Bssew : ssepelol L] L]
o m.m__m.nu .o.mmu.mnv_h___ﬁ.uh M = unjnemliemod : esdijo3uplemod {s1e/jop = 1un)[sIe]|opliS00 +1S0D[EI0) {nem = yunjiembiomod : JoModI0s
=t 2 ; E {nem = yunjembemod : JOMOXeW {wesbojp| = un)[Blssew : ssepelo) {s1eljop = y1un}{sIejlopliso :1s00EI0) {nem = yun)iemliomod : smodioq
e = yuniipemhemocigesod (1M = Un){EMLIBMOT - JOMOUGIOBAE, {ierouww = yunjueouesip : SSeUYoI LU {wesbop = un) (Brlssew : ssew[eio} sonen
{wem = yuniiyiemliomod Ean AR {seynuiw = unfseinuiwlew : esdipIXew UEISIp ¢ {sdap = yun)sdaplereselep : ereyuopoN|
{508 = oo Jed SR Ty Ay = junseinulewy : esdi3 N = yunisdanfereseiep :sjeyuoRnpoiderEp weyskeans 533
) {nem = unjmempamod :uonedessiqieaH|eusajul {nem = un)iemliomod : Jemodxew
{em = yunjembiamod : Jomogixew! > ; «wershsans»
" {s1o10w e2enbs = jun)[w bsJezis : ealyBuIGIoSqe: {em = yun)firembiomod : JomodyGOBNE
{em = yunjfemfiomod : JemodNGIOBNE! wpojgy
= : < {s1090u e2enbs = jun)[w bsJezs :eelyBupeIPR {snisjo0 = yun)fojseasbep : dwey Bugesedoxew
{shun FESBANS = yun)syun FBSBANS : ezis e e (B = yunzwby {snisje0 = yun)folsessbep : duis) Bupesedoui
soryen 8 g s -
293 : AnIqIosqe {gwib = yunjzwy em
waysAsqns suoesjunwILIo) o0k} wershsqns [eusey : edA L wersAsans ewEU) {gwb) = yunjzwy : [OWzzZIpefoidep {em = yunjempemod : Bupitiemod .
aweshsqns» sonen {Zwib) = yunjzwBy : OWAAIPeAoIdep {suomeu = Junj{Nleoso; : fsruty &
©poigy weysAsqng feusiey) {guib) = yunjzwy : IoWxxipakordep {wesbop| = yun) [Brissew : ssepkip
sonjen {syun BSBGRS = Junjsyun BSBARD - ezis {s:20p = yun}{sseloplisco : 1s0DjEI0}
«wershsqns» . S N = ;
e SR E {spucoas = yun){spuooeslews : esnduwiypeds {weiopp| = yun)[Bylssew : sseweio)
«weishsansy sengA {sda = yunj[sdqijejeserep : sjeyuoRONpPoIJEIRP
g5 ey faaneoRaaT {em = yunpemlamod : Jomogew
ool :
ey {em = yunjiembiamod : JmoduGIOBAE
s {suun FESAYN = yunjshun ESSAND : ezis
{uerawuomau = un{wNJeoio} : enbiosxew
= {085 Jad Bop = yunlls/epluopeios : oleuMals
{Bep = yunjlieBue]seaiBep : AoeInooY|oRUOD
(1-nov) waishe uosindeid sonen
s wetakordaq | 1 S
euvse pred-s wwigo) e oy {stejjop = 1500010} weysAsans S5AV
. s {eiBop = yun){B]ssew : ssepleio} «awayshsqns»
x Jesuwossug =buus :eweNaloles ©foia»
{nem = yunjpembiemod : Jomodxew
{nem = Juninembemod : JemoduqiObae
{syun fBS3ANS = yun} N 0'9 = spun FESEINS : ezis.
{s/w = yun}{spupeeds : Aeyep
ewawe 455 s -
x o b amsoen s Kienes /
L/ Josussung 38N w00 {sieak = yun){sseakfou
5 IEsLOBgBSILL ENDY S0-LOY ey -
P sonen
7 seuuajue patoidsq _ _ uo1Is s 3)ISIES JO UCHIPUOD) 5§3:u.$:”ﬁ>»
»
wpojgy
[Bumeig qvo weyshs (7] J6umelq avo [ebexoed] uuioy say
ﬂ g [1ppq ES3AND 118S3ANS Droigl PP

Figure 33. Physical Decomposition
59

shows

Figure [34] shows an example of one of those subsystem views, and Figure
how teams can tailor that generic diagram into something that meets their unique
mission needs. In this example, the ADCS subsystem had unnecessary components
that were removed, and values were added to each remaining block to describe the
chosen components. Additional components were also added to address the needs of

this particular system.

bdd: [Block] ADCS Subsystem [ADCS Subsystem bdd]]

«block»
«subsystem»
ADCS Subsystem
values

controlAccuracy : degrees[angularfunit = deg}
slewRate : rotation[deg/s}unit = deg per sec)
maxTorque : force[Nml{unit = newtonmeter)
| size : CubeSat Units{unit = CubeSat Units)
avgOrbitPower : powerfwat{unit = watt)
maxPower : powerfwatljunit = wat}
dataProductionRate : datarate{Mbps}{unit = Mbps)
totaMass : mass{kg] {unit = kilogram)
| totalCost : costldollars}{unit = dollars}

: © o
«locko
Magnetometer

accuracy : degreesfangular]{unit = deg}

maxPower : powerfwattjjunit = wat}

reactionWheelMomentOfinertia: kgm2{unit = kom2} |
S =wa

values

maxPower : power[wattj{unit = watt}
accuracy : degreesfangularfunit = deg}
iIXOnPower : = watt)
= watt}
 |torqueCoilZOnPower : powerfwattj{unit = watt} | -
mass : mass[kg]{unit = kilogram)
cost : costldolars}{unit = dollars}

= kgm's)

initialRPM: Real
mass : mass[kg]{unit = kilogram}
cost : cost{dollars}{unit = dolars)

S B e B B Sjoirs B P [T oo
«block» «block» «blocky «bloch «block» «block»
Control Moment Gyroscope Sun Tracker Star Tracker Inertial Measurement Unit Horizon Tracker GPS Unit

values
| onPower : powerfwatt}{unit = watt)
accuracy : degreesfangularfunit = deg)
mass : mass{kg}{unit = kilogram}

cost : cost[dollars}{unit = dollars}

. values
. [onPower : power{watt{unit = watt}
+ |aceuracy : degrees{angularfunit = deg}

mass : massikg]{unit = kilogram})

values
onPower : power[wattfunit = watt)
accuracy : degreesangularjunit = deg)/
mass : mass[kg]{unit = kilogram}

cost : costldollars}{unit = dollars)

" | cost : costidollars]{unit = dollars}

values
onPower : power{watt}unit = wat}
accuracy : degreesfangularl{unit = deg)
mass : massfkg]{unit = kilogram})

valies
onPower : powerfwatt}{unit = watt}
accuracy : degreesfangularfunit = deg}
mass : mass[kg]{unit = kilogram}

cost : costldollars]{unit = dollars}

. values
.| onPower : power{watt}{unit = watt} .
© |accuracy : degrees[angularj{unit = deg}

+"|cost : costldollars}{unit = dollars}

mass : mass[kg]{unit = kilogram}

+ " |cost : cost[dollars}{unit = dollars}

This template structure is just to get you started and to
include value properties used in some built-ir i

| tools, but this subsystem should be tailored according to
your unique mission. This diagram obviously has too
many components, as unnecessary components are
meant to be deleted. When you delete blocks and
relationships from the template structure, make sure they
| are fully deleted (click the trash can icon) instead of just
removed from the diagram.

Figure 34. ADCS Template

“blocks
subsystem»
ADCS Subsystem

lcontrolAcouracy : degreesfangular] = 0.1 deg (uni = dog)
slewRate : rotation]eg/sfunit = deg per sec)

maxTorque forcelNmJ(urit =

size : CuboSat Units = 1.0 U {uri
‘avgOrbitPower : powerfwattjurit = wa)
maxPower : powerlwattjunt = wai]
dataProductionRate - datarate[Mbps}(urit = Mops)
totalMass : masslkg] = 056 kg {unit = klogram)

“blocks

curtentTRL : Real= 7.0

Eloctromagnst

1

s cblocks
eblock» Magnotometor
. . 1.2
Reaction Whee!
block» wblock» maxPower : powerwatt] = 0.9 W {unit = watt)
IR Earth Horizon Sensor Star Tracker 125 ot « et accuracy degroesfanguia(in - oo

{orqueCoiXOnPower: powerfwatt] = 0.0 W (uit = wat)
torqueCoilYOnPower : power{wat] = 0.0 W (.
{orqueColZOnPower - powerwatl] = 0.0 (it = wat
averagePower : powerfwatt] = 0.825 W {unit = watt}
minPower: poweriwatl] = 0.4 W (unt = ety

model Sring = RM3000

reactionWheelMomentOfinertia: kgm2 = 0.0010577 kg2 {urit = kg2
zeroTorquePower : powerfwat] = 0.27 W {unit = watt)
misec {unit = kgmis)

onPower powerfwatt]= 1.0 W {unit = watt)
acauracy e
maxPower : powerfwatt] = 225 W (unt = wa)

lonPower : powerwat] = 0.264 W {unit = wat]
Jaccuracy - degrees{angular] = 1.0 deg {unit = deg),
numberWideFOVsensors : Real = 1.0
numberNarrowFOVsensors : Real= 3.0

= dog)
iniaRPM: Real = 00

W {unit = wat)

‘minPower : powerfwall] = 1.65 W (unit =
powerfwatt]= 1.8 W {unit = watt)

Figure 35. ADCS tailored

60

While this CubeSat Reference Architecture is not intended to be fully simulated,

a State Machine diagram is necessary to highlight the states that the CubeSat may be

in. The diagram in Figure [36| serves as an example so teams know what a CubeSat

state machine might look like, but teams should make their own to describe their

unique mission CONOPS. By filling in this diagram, additional tables will also be

pre-generated, pulling state transitions, guards, etc. from this diagram. These state

transition tables and state descriptions are useful for stakeholder documentation when

the CubeSat states are discussed.

‘stm [State Machine] CubeSat State Machine[CubeSat State Macmne])

Stowed |

/Run Pre-Separation Initialization Script
Pre-Separation
entry / Perform Functional Check
[Separation Successful == True] / Deploy

and Run Separated Initialization Script

Separated Fault Mode

do / Perform Precise Range Measurement

at (146 sec after separation) / Run
Post-Separation Initalization Script

)

do / Perform Fault Management

/Switch ADCS to Sun

at (30 min after Separation) / Poming

Run Initialize Comms Script

Comms Enabled

Contacting Ground Station
after (TBD Time

Beacon |, W0 CoMa) "Receive

Mode Mode

] |

[stabilized

T Sun Safe
Transmit
Mode do / Point Solar Panels Towards Sun

Contacting Ground Station

after (TBD Time

Beacon
Mode

s
at (30 min after Separation) /
Run Initialize Comms Script

1Switch ADCS to Sun Pointing

/Run Sun Safe
Iniialization Script

| Wio Contact) (oo
| A——
Mode

[Transmit
Mode

System Checkout
do / Perform System Checkout

/Run Sun Safe
Initialization Script

Maneuvering

|
do Perform Maneuver |

/Run Maneuver
Initilization Script

1 Slew to Host Position

Conducting Experiment

Pointing

1 Power On
Payload

p ~ 1 Slew to Host Position
Standby |

Rotating
do / Perform Axis Rotation

o

1 Switch
Comms to
Receive Mode

Collecting Data

do/ Collect

(" Crosslinking
do / Crosslink Data

/Run Sun Safe Initialization

Decommissioned

Run DECOMMISSIONTG ! gntry Drain Batteries >©®
J Script)

Figure 36. State Machine

4.6 Behavior

One of the most important documents that teams will need to create is the

CONOPS, which requires most of its data from this Behavior section of the Reference

Architecture. Figure[37]shows the top level organization of the Behavior package with

the key diagrams that ultimately fill out the CONOPS document.

61

bdd [Package] 3 - Behavior[Behavior Organization])

This is a wide-view of all of the subsystem status tables and notes that will be pulled OV1 - High Level Operational Concept

by the CONOPS document generator.

OV1 - Place your OV-1 graphic in this freeform diagram. This will be used by various

documents. OV1 - High Level Operational Concept

Mission Phases - This package contains a bdd which has a place for each individual

mission phase's activity diagram, subsystem status table, and text description.

Fault Management - This package contains a bdd that has a place for each fault

state's text description and subsystem status table. ' Mission Phases Fault Management

CubeSat Activities - This package contains a CubeSat Mission Activity

Decomposition bdd and a Subsystem Activities bdd, which holds specific subsystem

activities, if needed. &,
Mission Phases Fault Management

Use Cases - This package contains a Use Case diagram to show operational

scenarios and includes a table to describe each one. These descriptions are used in

the CONOPS document. - -
Mission Phases Fault Management

CubeSat Activities

)

CubeSat Mission Activity Decomposition
Use Cases
Subsystem Activities

Operational Use Cases

Subsystem Activities

Operational Use Cases

73
73

Figure 37. Behavior Organization

The note in Figure [37 describes what teams should use each included package for,
and each package is hyperlinked to more detailed diagrams to fill out.

A template OV-1 has been included in a free form diagram, and teams will replace
this template image with their own so that documents can include the image automat-
ically. The OV-1 is a “High Level Operational Concept Graphic,” usually a preferred
view of a mission from Senior Leaders. The Department of Defense Architecture
Framework describes it as “a mission, class of mission, or scenario. It shows the main
operational concepts and interesting or unique aspects of operations. It describes the

interactions between the subject architecture and its environment, and between the

62

architecture and external systems. The OV-1 is the pictorial representation of the
written content of the AV-1 Overview and Summary Information. Graphics alone are
not sufficient for capturing the necessary architectural data. The OV-1 provides a
graphical depiction of what the architecture is about and an idea of the players and
operations involved. An OV-1 can be used to orient and focus detailed discussions.
Its main use is to aid human communication, and it is intended for presentation to
high-level decision-makers. [17]”

The Mission Phases package (Figure contains a block definition diagram which
has a place for each individual mission phase’s activity diagram, subsystem status
table, and text description. During each mission phase, the CubeSat’s various sub-
systems will be in unique configurations, and this package includes an easy way to
capture those. To capture these different configurations, tables have been created for
teams to determine the various states for each subsystem for each phase. In addition
to the subsystem configuration tables, teams should write textual descriptions of the
applicable mission phase in the “Mission Phases” table (Figure and create activ-
ity diagrams to show what happens in each phase. All of these will be used in the
CONOPS document.

63

bdd [Package] Mission Phases [Mission Phases])

Mission Phases

This table includes all of the text
— — —descriptions for each Mission
Phase. Replace the template
text with your own descriptions.

Launch and Ascent Subsystem Status

0

|

Separation and Deployment

and D Status

)

Initialization Subsystem Status

Initialization

—

Bus Checkout Subsystem Status

Bus Checkout

|

Payload Checkout Subsystem Status

Payload Checkout

g_‘

Initial Acquisition Subsystem Status

Initial Acquisition

|~ -

Transition to Operations

L.

l Each package is hyperlinked to the
PreLaunch, relevant activity diagram to fill in, and if
applicable, contains a subsystem status
table to modify using choices in the
dropdown menus.
/
! I
Launch and Early Orbit Operations Operational
Launch and Ascent] 1

Perform Mission Ground Station Pass

Perform Mission Subsystem Status Ground Station Pass Subsystem Status

5 =
|

Bus Housekeeping

Bus Housekeeping Subsystem Status

Eo

—]

Decommissioning

Decommissioning Subsystem Status

2

Figure 38. Mission Phases

64

Name Text

Activities during the Pre-Launch phase include: 1) functional and environmental
testing to qualify that the space vehicle's ready for flight, 2) transporting the space

Pre Launch Phase vehicle to the integrator's facility, 3) integrating the space vehicle with the
dispenser, 4) integrating the dispenser with the launch vehicle, and 5) prepare for
mission operations.

Should describe the major events that happen to the space vehicle during launch
and "First Day in the Life" that includes being ejected from its dispenser and first

Launch & Early Orbit Operations Phase contact with the Ground Station. Should include any constraints put on the space
vehicle from the time it is ejected. Also what state the space vehicle subsystems
are in.

Describes the period from launch up to before separation. Should discuss

Launch and Ascent expected impacts of launch environment driven by launch vehicle selection.

Should discuss what happens immediately after separation from the launch vehicle

Separation and Deployment all the way through deployment of space vehicle appendages (solar panels,
antennas).
Should describe the sequences that the space vehicle will go through to gradually
Initialization initialize all space vehicle subsystems. This will typically be done in an autonomous
manner.

- s This should discuss the sequence of events that will occur for the first ground
Initial Acquisition . By R
station contact with the space vehicle.

Should discuss all of the planned activities for ensuring that the bus is functioning

Bus Checkout properly to include checkout of all of the subsystems except for the payload.

Should discuss all of the planned activities to checkout the payload to include

Payload Checkout calibration, different states, etc.

Once the space vehicle is performing as expected, there will be a transition to

Transition to Operations normal operations. Discuss what that transition will consist of.

Lead-in for what would typically be expected during normal operations. Further

Operational Phase details will be provided in the subsections that follow.

This should describe what the space vehicle is doing between when it is collecting

Bus Housekeeping data and when it comes into contact with the ground station to conduct a pass.

Should describe everything that happens before and after the space vehicle comes

Ground Station Pass into contact with the ground station. This would include the interfaces between
mission operations, the ground station, and the space vehicle.

Describes everything associated with the space vehicle conducting its primary

Perform Mission S)
mission of collecting data.

Decommissioning Phase Should describe what actions are taken to decommission the space vehicle.

Figure 39. Mission Phase Descriptions

The Fault Management package, shown in Figure [0} includes similar tables that
will describe the various fault states in narrative form and in tables that shows each

subsystem status.

65

bdd [Package] Fault Management[Fault Management])

This table includes all of the text
descriptions for each fault state.
Replace the template text with
your own descriptions.

Fault Management

Each package below includes a
subsystem status table to modify using
choices in the dropdown menus.

—

Loss of ADCS

&

Loss of ADCS Subsystem Status

Loss of Comm

N

Loss of Comm Subsystem Status

—

B

—

Loss of Thermal Control

N

Loss of Thermal Control Subsystem Status

B

—

Sun Safe

N

Sun Safe Subsystem Status

Survival

N

Survival Subsystem Status

The CubeSat Activities package can hold any additional activities needed to de-
scribe the system. Activity diagrams for each critical mission phase have been created,
although most only contain the starting and ending nodes. These vary substantially
from mission to mission, so teams will need to populate these on their own. Finally,

the Use Cases package includes a generic Use Case diagram that should be tailored.

4.7 Analysis

The Analysis portion is how teams show that their requirements are verified and

how they track any external analysis done to generate requirements. Figure [41| shows

Figure 40. Fault Management

66

the top level organizational structure. As is the case throughout this Reference Ar-
chitecture, many of the included packages are hyperlinked to more detailed diagrams.

The Trade Studies package is a place to store any applicable trade studies in block
form. This allows for requirements to be traced to any relevant analysis done in other
tools. For example, if a team performed a Launch Vehicle Trade Study that ultimately
impacted a requirement, that requirement could be traced to the Launch Vehicle
Trade Study block, which includes the most current trade study as an attachment.
This makes it very easy to know exactly where the numbers or decisions came from

and stores that in the model for easy reference and modification from the team.

67

bdd [Package] 4 - Analysis[Analysis Organization] J

Trade Studies

Mass Budget

Mass Budget Launch Vehicle Trade Study RF Link Budget
«block» «block» «block»
«Analysis Document» «Analysis Document» RE Link Budget Analysis

Launch Vehicle Trade Study

Owned Element =

Owned Element =

Owned Element =
RE Link Budget.xIsx

Mass Budget.docx Launch Vehicle Trade Study.docx =
Cost Estimate Constellation Design Trade Study Power Budget
«block» «block» «block»
«Analysis Document» «Analysis Document» «Analysis Document»
Cost Estimate Constellation Design Trade Study Power Budget

Owned Element =

Owned Element =

Owned Element =

Diagram nam Analysis Organization

Last modified: 12/18/20 1:21 PM

Last modified by: skelly

This model is UNCLASSIFIED.

DISTRIBUTION A. Approved for public release:
distribution unlimited.

Any analysis you do outside of the model
should be referenced here as a block to
ensure proper traceability. For example, if
you do some orbital analysis using STK and
decide on an orbital altitude as a Mission
Requirement, you can trace that MR to the
analysis block. Furthermore, attaching that
analysis (if possible) makes it easy for
stakeholders to see how the requirements
came to be by looking at the excel file or

Constellation Design Trade Study.docx Power Budget.docx trade study itself.

Cost Estimate.docx ‘

=
L3
Verification Analysis Hardware Tests
1 ADCS Tests C&DH Tests EPS Tests
Rollups LMMT Integration Thermal Analysis
& & &
Mass and Cost and Size LMMT Integration Thermal Analysis Model oN sl S Tests Paylola dTests Thennl al Tosts
& & &
Power Analysis Payload Analysis Orbit Analysis Propulsion Tests ‘ Bus Software Tests
o &b
Power Analysis Image Quality Analysis Orbit Analysis
Ci icati Tests Tests
ot
] & o
Link Budget Analysis & T
In each of these linked bdds, drag your
subsystem requirement blocks into the
) . diagram, and crate test activities to verify
Uplink Analysis them. One test activity can verify multiple
requirements if appropriate. If desired, the
test activities can be further detailed inside
their activity diagrams, but only the test

name is required to fill in the tables &
matrices.

Figure 41. Analysis Organization

The Verification Analysis package contains several templates or patterns that high-
light some capabilities of Cameo for requirement verification. For example, the Ther-
mal Analysis parametric diagram in Figure 42 shows how to use a MATLAB script
to perform analysis based off the values entered in the thermal subsystem, as well as
any other values that affect these calculations, such as the CubeSat’s mass and some
orbital parameters. The code in Figure |42|is not necessary to read in this thesis, and

is usually hidden from view when scripts become lengthy, but is shown here just to

68

highlight where the code is stored. This section is intended to encourage teams to
perform analysis within the model instead of in other tools. By performing analysis
within the model, easy verification of candidate systems can be accomplished using
Instance Tables or the default values assigned to component value properties. The
CubeSat Reference Architecture purposefully does not include default values for the
components’ value properties, but an instance table, such as the one in Figure [43], can
be simulated using the MATLAB code to compare how different candidate systems
perform. This instance was simulated, and the results are shown in Figure By
changing one or several value properties in the relevant blocks or in the instance ta-
ble, these graphs automatically update to show how the performance changes. This
is extremely useful for many requirements that are affected by multiple subsystems
or multiple components. A constraint block can be created that uses those value
properties as inputs, and the performance outputs can be quickly assessed in mul-
tiple system configurations. The included parametric diagrams serve as patterns to
replicate and modify, reducing the learning curve for teams who haven’t learned these

capabilities yet.

69

[wx]eoue)sip : snipes yues

:(0L-fEA [09 1)SQE = yIp
uonenoles 8ouaIad %

(oo™ L)wbuB|)e™ L = [eA 08 L

(suopdo’((uns™ L) Busi)uns™L ‘o8 Uedsy (o'w'sde"eydie’L o8 s wou™dy"y'10s” Ul iesu(L) B)srepo = [0s L'os]
‘09,31 0] = pe"ueds}

suolypuod asdijos Jo uoneibeu] %,

‘((uns™1)yiBusj)uns™| = [eA uns |
‘(suondo‘o] ‘uns”ueds)'(o'w'sde‘eydje’ | 'e”S'wou” dy'y'ui)ieay(11)@)syepo = [uns] ‘unsTi]
‘(6-211015qV,'6-81I01184,)}9s8pO0 = suoido
{[09,S1 0] = uns"ueds}
SUONIPUOD JI[UNS JOAO uone.Baju| %,
12)uno9 1qi0% |+ dajs = dajs
ST < HIP 3MyMm

‘L=4p
yB1juns Ul Ajuo sjoeye opag|e sewnssy ‘pappe opaq|y UM XNy JejoS % (opeqie+L),s = &S
ajewnse ainjesadwa} [eMu| - M% ‘GL'€6Z = OL

ZvS/EyUN| : Yues nw

SISA[EUE 10} SJUBJSUOD UOWWOD :

o

" kdo eujuou Buunp ejels WNuGYINbe SUILLISIEP 0} SUOHEINDIED [EULBY L %%

(sepnuiw) swn Yuns % J1-d = SL

nw

.] (seynuiw) swy esdijo3 % (d.d/oyl)punos = 31

((y+ox)/eu)uise = o
suope|nojed esdijo3 pue poudd %%

sBuneod SS300¥d 3ZIAOLL |1 9dAL 1oy senjeA 9%
JRYAISSIW/WODBZIPO MMM /:SARY %

[senuiwlowy : pouad

[wy]esueysip : spmye

soepns %

M) opagje ype3 abesane % ‘€0 = opaqe

Se|qeLBA %%

asdijoa ul xnj Jejog % ‘0 = [09° S
XY Jejos ZvW/M% ‘€SEL = S

uQo :

SJUBISUOD %%}
SISA[eUY |euuay) :
«uIBHSU0D»

_H - |eay : AjAnqlosqe
eydie
[| :
woidy | [whbsezs : easyBuigiosqe
_H ;, [d: i jeay oyioads : Jeay oywads d 9
)
_H sde
L~
L uo Q [emliemod : yBiungupemod
_H oo uD [yemliemod : esdijogupsemod
_H = 1 [wbsezs: xew dy
xew ™ dy
[l (wbsions: uway
ulwr dy
. waysAsqng [euuayy :
_H M [By]ssew : ssepjejo} _ M
w.
Jeseqng :

Figure 42. Thermal Analysis

70

-[7] Thermal analysis instances
(= test run : Thermal Analysis

© alpha = 0.82

© Ap_max = 0.06 m2

© Ap_min = 0.02 m2

&) Ap_nom = 0.036 m2

G Ar=0.22 m2

©) c=460.548) /kg*K

©) eps = 0.51

© h=600.0 km

© m=10.857

© mu = 398600.4418

@& P = 93.0 minutes

® Qin=12.6

®) Qin_ecl = 17.2975

¢ Re = 6378.0

-E2 Thermal Analysis

Figure 43. Thermal Analysis Instance

71

saInujw ‘esdijos Bupixe SouIs Sl
or

06 08 oL 09

Anu3 esdip3

W SA J9MOd YEad HIUNS UM 9jyold aimjesadwa)

[\ 0z ok 0
T T T 0
15
qot
-
E]
3
R
=2
3
a
H0z@
§
o
152
q0g
Hung
- se
Yy B0 2+*RA20
S|00] M3SUl M3IA UPT I |~

disH Mmopuim dopjsaq

[wy]esue)sip : snipes yues

(601 "10LSqV,'6-0 101194)19s3p0 = suoido
{[09,S1 0] = uns”ueds}

SUONIPUOD JI|UNS JBAO Uone.Baju| %,
19)UN09)Iqu0Y, |+ das = da)s
SZ' < HIP UM

0 = do)s
‘L=yp

ajewnisa ainjesadws) (el

- M% 'G1'€6Z = 0L

ZvS/EVUD] : Yyped N

°y

(senuiw) swi Juns % ‘31-d = SL

SISA[EUE 0} SJUBJSUOD UOWWIO :

nw

ﬁms:_éos_.oa__omﬁan_._n\oéuczeumh
] ((y+oy)/ey)uise = oy
suope|nofeD esdio3 pue pouad %%

sBupeod SS300Ud 3ZIQOLL Il 3dAL 4o} sanjen %
JRYAISSIWS/WOD"BZIPOl MMM/ /:SANY %
juswieal) 8oeunsS %,

H_ovmn_w E._mmmmw._gwe\aunm.onoumn_m
SOIqBUEA %%

asdijoa ul xnjj Jejos % ‘0 = [09° S
XN} Jejog ZyW/M% ‘€SEL = S

: epnypje

uQo :

SJUBISUOD %%}

saInujw ‘esdijos Bupixe SouIs Sl

1Biuns ui Ajuo s8ye opag|e SewWnssY "pappe opaq|y UM Xni} Jejos % (opagie+L),S = E'S

Hwno [euiwou Buunp sjejs WNUqIINba SUILLISISP O} SUCHENDIED [EULSY] %%

06 08 oL 09 05 oy og 0 |
T T T T T T T 0 F
=
e
o . . .
i
H
=
=
3
g 1° @
] 3 . . .
[K
o 8
3 18 3
a
@
Q
3
Jor 8
o
He
. . .) . . L
awi) sA ainjesadwa) wnuqiinbg
DY B0 © ¢ A Qo
djpH mopuim dopjsa@ sjooL MIIA HP3 34
1 bs]ezis : easyBuiqiosqe
L aunbiy e00
=
m sdo
m 7 [w bs]ezis : easyBuneipes 7
B4
1 r
:_n.v # ﬁ.«m;_.wsguﬁ.m__:.,w:_.u;en*
m_um\c_e :
m — [w bs]ezis : xew ™ dy
xew ™ dy
m — [w bs]ezis : ujw dy
uwr dy
waysAsqng euusyy :
m M [6y]ssew : ssepejo} M M
w.
Teseqng
SISA[euy [euuay] : R N
«uIensuoo»

Figure 44. Thermal Analysis Run
72

As teams progress from the design, they will test physical hardware. Before teams
begin testing physical hardware though, they need to document their test plans.
The Hardware Tests package includes workspaces for each subsystem that establishes
consistency and makes it easier to generate the necessary tables to describe test
activities. Each requirement should be tied to a test (sometimes multiple requirements
can be verified by one test), and this can be done in diagram form. For example, if
the Electrical Power System (EPS) lead needs to plan EPS testing activities, they
can open up the EPS Tests bdd and follow the template process. If they drag and
drop all of the applicable subsystem requirements onto this diagram, as shown in
Figure [45] they can easily create test activities and assign a ”verify” relationship
between them, which automatically populates the included tables. In this example,
notice the “Weigh Components” test, and that test verifies the EPS Subsystem Mass
requirement. This pattern should be continued until each requirement is verified by
some activity. Finally, the test activity tables provide a place to textually describe
what happens in each test to verify the requirement(s). These tables are all useful
for the Test Plans and Test Reports, keeping the model as the primary document
instead of different files and formats for each subsystem. The subsystem requirement
tables in this section also include a method for tracking testing progress while also
establishing a common set of definitions. Previously, tests that were "not verified”
for whatever reason were all in one category, causing confusion amongst stakeholders.
Now, tests can be labeled from a drop-down menu as "not verified” for the specific
reason and they are labeled in a color to bring attention to problematic tests. Figure
shows an example of how this could be used. The Verification Status legend is
located in the Component Library and can be modified if definitions or categories

change.

73

i

PS Requirements EPS Tests
«Subsystem_Requirement»
Mass
«activity» __ _wverify» N Id ="EPS-1"
PS Test 1 - Weigh Components risk = High

Text = "EPS Mass
Requirement te:
VerificationStatus = Verified
verifyMethod = Test

Figure 45. EPS Tests

Verification Status: [Verified [0 Testing in Progress - On Track [] Not Verified - Test Not Complete [] Not Verified - Test Needs Review [] Not Tested - Other
[Not Verified - Does Not Meet Requirement [[] Not Tested - Out of Scope

A Name Text Derived From Verify Method Verified By Verification Status
-______
=] EPS-2 Power
EJ EPS-3 Energy Storage
] EPS-4 Fault Protection
EPS-5 Maximum Load Power
EPS-6 Charging Efficiency
EPS-7 Battery Pack Protection
EPS-8 Charging While Rotating
EPS-9 Chassis Ground Connection
EPS-10 Solar Panel Voltage Range
EPS-11 Battery Load Current (Stowed)

EPS-12 Battery Temperature Monitoring
EPS-13 Ground Support Equipment Charging
EPS-14 Battery State of Charge Monitoring |

DDODDD DD DD

Figure 46. EPS Test Verification

4.8 Component Library

The Component Library is a function inspired by the SUAS Reference Architecture
[20]. The goal is to have a library of components to choose from for each subsystem
for rapid prototyping that improves over time. As teams create new CubeSat designs,
the individual components can be stored in the Component Library for future reuse
by other teams. For example, if there are multiple commercially available solar arrays
that previous teams have used in their designs, those solar arrays will be available

to reuse with all of their value properties already filled in. A team could swap out

74

multiple solar arrays from the Component Library in their EPS subsystem diagram
and perform analysis to quickly assess how each one performs for their system. Figure
[47] shows the top level view of the Component Library, which has a separate package
for each subsystem.

Figure 48 shows how it could be used in a simple example with different CubeSat
bus sizes. In the Structures package, multiple chassis sizes, with their dimensions all
filled out, can be quickly copied and pasted into a new model. If some value differs
from the default values provided, the team would just need to make those modifi-
cations. Figure 9] shows how Enumeration lists are also stored in the component
library to be used throughout the model. These enumeration lists are all consoli-
dated in their respective subsystem packages instead of scattered across the physical
model. In this example, instead of typing in a string of text to denote the battery
chemistry, the user can just select from a drop-down list of the available types in the
enumeration list. These are created for many subsystems, and as new choices become

available, these can be updated.

5

pkg [Package] 2 - CubeSat Component Library [CubeSat Component Library] J

1 | —i

The component library s intended to be an evolving CubeSat lisers Environment
repository for components to build your CubeSat

architecture. AFIT has some custom parts that will be 4

identified here, and other subsystems have generic or & 1Y

COTS components to choose from. The value properties =D

should not be changed in the Component Library by student REZEnCintecesty

teams - those can be changed once you copylpaste Cubegat Launch Vehicle Ground Segment
components into your own model. values

reliabilty: Real L

The component library s also a stable place to hold life: timefyears}{unit = years} iy &

enumerations, object flows, and value types that will be used length : distance[mm] = 366 mm {unit = millimeter}

by multiple models. If you wish to change an enumeration for, width: distancelmmi = 239 mm {unit = millmeter}

example, it makes more sense to change itin the height: distancelmm] = 113 mm {unit = milimeter} Operational Domain

component library than in multple places. The Value Types deltaV': speed[m/s}{unit = m/s)

package is also important - it holds all the custom value size : CubeSaf Units = 6.0 U {unit = CubeSat Units} I

types and units used throughout the model. avgOrbitPower : power{wattjunit = wat) iy

LT i Ll = il Thermal Structures
: String=
Constraints Value Types totalMass : mass{kg]{unit = kilogram} Mission Parameters
Glossary totalCost : cost[dollars]{unit = dollars} =y |
e «block»
|] Software Propulsion EPS Payload Orbit
«profile» L4 | . values
Custom Stereotypes B &3 . L) semiMajorAxis : distancekm] = km {unit = kilometer}
]] (o semiMinorAxis : distancelkm}{unit = kilometer}

inclination: degreesfangularjiunit = deg}

RAAN : degrees[angularjiunit = deg)
argumentOfPeriapsis : degrees[angularfunit = deg}
= deg)

lyAtEpoch:
percentTimelnEclipse : Real

Communications
Object Flows
a . =
Port Types
Constants

«block»

Common constants for analysis

values
gravity : acceleration[m/s2] = 9.86 m/s/s {unit = m/s"2}
pi: Real=3.14159

¢ : speed[m/s] = 300000.0m/s {unit = m/s}
Stephan_Boltzmann: Real = 5.67051E-8
gravitational_constant_earth : Real = 3.986004356E14
earth radius : distancelkm] = 6378.0 km {unit = kilometer)

mu_earth : km"3/s"2 = 398600.4418 km"3/s"2 {unit = km"3/s"2}

Figure 47. Component Library

=deg})
altitude: distance[kml{unit = kilometer)
numberOfPlanes : Integer

velocity : speed[km/s]{unit = kim/s)

period : time[minutesJunit = minutes)
trueAnomaly : degreesfangularfiunit = deg)

mass : mass[kg] = 24.0 kg {unit = kilogram}

«block» «block»
12U Chassis 27U Chassis
values values

mass : mass[kg] = 54.0 kg {unit = kilogram}

length: distance[mm] = 360.0 mm {unit = millimeter}
height: distance[mm] = 240.0 mm {unit = millimeter}
width : distance[mm] = 230.0 mm {unit = millimeter}

length: distance[mm] = 340.0 mm {unit = millimeter}
height : distance[mm] = 360.0 mm {unit = millimeter}
width : distance[mm] = 350.0 mm {unit = millimeter}

«block»
AFIT Grissom 6U Chassis

values
length : distance[mm] = 366.0 mm {unit = millimeter}
width : distance[mm] = 239.0 mm {unit = millimeter}
height: distance[mm] = 113.0 mm {unit = millimeter}
mass : mass[kg]{unit = kilogram}
cost : cost[dollars]{unit = dollars}

«block»
«subsystem»

Structures Subsystem

values
deployedIxxMOI : kgm2{unit = kgm2}
deployedlyyMOI : kgm2{unit = kgm2}
deployedIzzMOI : kgm2{unit = kgm2}
deployedixyMOI : kgm2{unit = kgm2}
deployedIxzMOI : kgm2{unit = kgm2}
deployedlyzMOI : kgm2{unit = kgm2}
centerOfMassX : distance[m}{unit = meter}
centerOfMassY : distance[m}{unit = meter}
centerOfMassZ : distance[m}{unit = meter}

totalMass : mass[kg]{unit = kilogram}
totalCost : cost[dollars]{unit = dollars}

aluminumThickness : distance[mm]{unit = millimeter}|

«block»
«subsystem»

Qanaratinn Marhaniem

«block»

Figure 48. Component Library - Structures

76

«block»

Qanenr Daintina Marhar

«block» . «block»
Battery Pumpkin BM-2 Battery
values values
batteryChemistry : battery chemistry batteryChemistry : battery chemistry
batteryType : battery type batteryType : battery type
maxDepthOfDischarge : Real . maxDepthOfDischarge : Real
numberOfCycles : Integer numberOfCycles : Integer
numberOfBatteries : Integer numberOfBatteries : Integer
transmissionEfficiency : Real transmissionEfficiency : Real
capacity : electrical[Ah] = Ahr {unit = Ahr} capacity : electrical[Ah] = 12 Ahr {unit = Ahr}
initialFill: real[percent]{unit = percent} . initialFill: real[percent] = 100.0 % {unit = percent}
nominalVoltage: voltage[V{unit = volf} nominalVoltage: voltage[V] = 14.4 V {unit = volf}
cellCount : Integer ... |cellCount: Integer
mass : mass[kg]{unit = kilogram} mass : mass[kg]{unit = kilogram}
cost : cost[dollars]{unit = dollars} cost : cost[dollars]{unit = dollars}
«valueType» «valueType» «valueType»
Solar cell type g battery type | - - battery chemistry
silicon Primary Silver Zinc AAC ClydeSg
thin film amorphous silicon Secondary . Lithium Thionyl Chloride T
gallium arsenide Lithium Sulfur Dioxide
indium phosphide Lithium Carbon Monoflouride;
triple junction galium arsenide| I " | Thermal
. Nickel Cadmium
Nickel Hydrogen
Lithium lon

Figure 49. Component Library - EPS

Another important area of the Component Library is the custom Value Type
library. Using the default ISO-8000 library seemed like the logical choice for units,
but there were several issues with it that caused frustration over time. Most value
types in the ISO-8000 library were never used and crowded the selection window
when a user would try to find a unit, the spelling and naming conventions did not
match what students were expecting or were accustomed to, and most importantly,
they were not able to be modified without causing errors every time Cameo was
opened. To alleviate these issues, an entire custom value type library was created to
stay more organized and allow for easy modifications and customization. The Value
Types, Units, and ”QuantityKinds” (a SysML necessity for units to work properly
in analysis) are all stored neatly in packages based off their type. When a user is
going to add a new Value Property to a component block, it is now very easy to
find the relevant value type to assign to it. The default practice amongst students
without having this central repository is to just type in a new Value Type, and then
that Value Type appears in the same location as that block. This isn’t necessarily

a bad thing on a small model, but a Reference Architecture is meant to be used for

7

multiple candidate architectures and multiple projects, and referencing a new Value
Type that belongs to another physical model should be avoided. For that reason,
all Value Types are stored in one central place within the Component Library. This
has also been done with Object Flows in the Reference Architecture. Object Flows
represent the flow of objects, whether they are matter, energy, or data, primarily used

in the Mission Context diagram shown earlier in Figure

78

= 1

map [Milsemod [1emlaamod [ww]eoueysip [wu]eoueysip [zuayeBaw]Aouanbaiy [w]yBuajanem
«adA1anjea» «adA1anjea» «adA1anjea» «adA1anjea» «adA1anjea» «adA1anjea» «adAanjea»
. aouejsip : Aouanbaiy .
. Zwbym] = yun
IOWE] = puyAyuenb
«edALenjen»
. Zwiby
. . «adAanjea»
: : ZvS/EVUNA] = Jun Jusosad] = yun
. Juelsuo! eyneIBE] = pursiAmuenb |esiB] = pursiAmuenb
«adALenjer «edfLonjen»
ZvS/Evuny [usoiad]jeas
: «adALanjeA» «adAenjeay
. sdg[n] = yun sdgyA] = yun 1 SUOMBU[T] = Jun wesb[] = jun
[©] = PUMAl b [©] = PUMAl b 90J0j[o] = puryAiuenb ssew@] = puryAyuenb
«edfLenjer «adALenjer «ed1enjen «adALenjer»
suonesado uoissiuw [njssaoons ybnoayy uaaocid wa)sAs [enjoy 6
[oas 1ad sajhg]ejeseiep [oas 1ad syqojpj]ejeseiep [N]eoa0y [Blssew TOIERSuowap pue T531yBnoay) paiyjenb pue pajajdwiod wasAs |enjoy
N B «adk]enjerr «adk]enjerr] «adfenjerr «adk1enfer» jJuBLIUO.IAUS [euOEIadO UE Ul TONERSUOWSP 8dAjojoid WalsAs :
Juensjal e u) ToRensuowap adAjojoid 1o [opow weysAsqns/welsAs 9
JueAslal Ul Jiojpue 0
1nus A epl Jojpue 9 -
sJejjop[i] = Jun sdquA] = yun a9 Jejewuomaufi] = jun weibo|y[a] = yun 1deou09 Jo Jooid opsuBjoRIEYD JO/PUB UOKOUN) [EORLD [BJUSWIAdXS pue [ednkleuy g
1S00[5] = puIMA)L b ©] = pur b T = pur | | e010)m] = puryhyuenb: ssew[@] = puiyApuenb. I Jo/pue jdesuod 1
«adA enjea» «adA enea» «adfLenfen» «adf enjer» «adA enea» papodal pue paassqo sajdiouud oiseq :|
[ssejjophsoa [sdqw]ejeserep [ao]lebeioys [wN]e210) [Bx]ssew TaL
«adAanjeA» «adAanjeA» «adAjanjea» «adAjanjea» «adAanjea» «adA anjea»
3502 ejep @210} ssew oasjw
N Tesaqno[n] = Jun S/wy[A] =yun S/w@] = yun snisjeQ] = Jun sinoy[a] = jpun senuIwW@] = Jun
BWN|oAT] = puryAnuenb paads[] = puryAiuenb paadso] = puryAiuenb ainjeradws)o] = puryAyuenb awno] = punyAiyuenb awn©] = puyAyuenb’
«edf enjen «ed1enjen «adfLenje» «edA1enjen «edAjenjen» «adALenjer»
sjun ¥€SIqGny. [sjunilpaads [s/w]peads [o]seaibop ¥ I ¥
«adAenieay «adAenieay «adALanjeA» «adAenjeay «adk)enjeay «adALanieA»
18senbs] = s19)a] = ZvS/WE] = pun N = Jun MBI = nun SpU02as(i] = yun sieahfi] =
] = punyAiuenb] = puiik] = puryAuenb A b 5] = PUIMA] b awnE] = puiiAuenb
«adALenjer «ed enen «edALenen «adALenjer «edLeneny «edALenjen «adALenjer
[w bs]ezis [s1a3]ownjon [z s/w]uoneusjasoe [Mlseaibap [dolAyoedes jeay o) [spuodas]ewn [sseak]own
«adA anjea» «adA1anjea» «adAanjea» «adA1anjea» «adA1anjea» «adAanjea» «adA1anjea»
azis paads ainjesadway awn

L ee—

2 - .

Figure 50. Custom Value Type Library

79

4.9 Document Generators

While the model should be able to stand alone to represent the CubeSat system,
stakeholders may prefer to view system details in document form. This could be
because they don’t have access to the modeling tool, or because they are more accus-
tomed to seeing traditional reports. Whatever the reason, it would save time if those
documents could be generated from model elements alone. Copying diagrams into a
word processor and transcribing the requirements, etc. into tables, as is traditionally
done, causes issues with version control and maintaining consistency. For example,
if a team is writing a Space Vehicle Requirements Document, they could copy the
requirement text from the model into a table in Microsoft Word, but if a requirement
changes within the model, the team would need to catch that change and manually
update any documents as a result. This CubeSat Reference Architecture proposes a
new method for generating documents using Apache’s Velocity Template Language.
Cameo Systems Modeler is written in Java, so each model element is defined using
Java code. This can be taken advantage of by populating a Microsoft Word file with
code that imports those Java elements when it’s run. Essentially, the Word templates
tell Cameo what elements to export and in what order and in what format. This al-
lows for fully custom, well-designed documents to be generated that require minimal
formatting before delivery to stakeholders. If any model elements change, the team
can just regenerate the document, and all tables, diagrams, etc. will always reflect
the latest version that resides in the model.

Figure |51 shows an organizational diagram showing the pre-built generators that
are used in AFIT’s Spacecraft Design Sequence. Instructions are also included, and an
in-depth, commented Generic Model Document is provided. This generic document
is the foundation for all other templates. This generic document has code for any

Reference Architecture section and guidance for how to modify it and why the code

80

is written the way it is. If a new document is requested that does not have a template
yet, a team can take portions from this master document into a new template for
whatever model elements they wish to display. It also maintains a revision history
that resides in the model, so when changes are made, the team can notate those and

they will show up in all future documents in a table of revisions.

bdd [Package] 5 - Document Generators [Document Generators Organization] J

—
1. To generate a document, right click the document icon and select "Generate DOCUMENT NAME." MF I |

2. Click "Next' and then click "Variable" to access the document variables menu. This is where the document pulls the Revision history from, so ensure that each time you make changes and

regenerate the document, that you add a revision variable for the author, date, and revision information. A FoRGE INSTITOTE OF TEGHNGLOGY

3. Locate your system model and add itto the "Selected Objects” field on the right side of the Report Wizard. Click "Next" Document Generators

Diagram name: P
ag Organization

4. Select a location for your report and click "Generate"

Last modified: |[1/21/21 2:47 PM
5. The document should generate a MS Word file that you can inspect. You will need to update the Figures and Tables so they renumber accordingly (Select all, right click and click "Update =
Fields", then right click each table of contents to update. Last modified

by:

skelly

6. If you need to make any changes to text, it's best to update those fields within the model and regenerate the document instead. That way, future versions willinclude those changes. Lead in
text (text that is only necessary in documents, not in normal model views) are located in notes within each document's "elements" package. If you edit the text in those notes, the text will be This model is UNCLASSIFIED.
reflected in the generated document.

DISTRIBUTION A. Approved for public release:
7. If you need to modify the template code, see the How-To Guide for more information. The template is sensitive to renaming, so if you've changed the names of ke diagrams or tables, that distribution unlimited.

may be the cause of your problems. If that's the case, view the code within the template and modify it accordingly, or change your diagram name back to the original. (Ways around this
potential problem area...| could use the popup selection menus for the student to actually select the appropriate diagram or | could include code in the template to check..f the name doesn't
match and it can't find the diagram, pop up an error window.)

Stakeholder Analysis Report Mission Requirements Document Generic Model Document

This is a master, tailorable document.
If someone wants to create a new

document type, this i the place to

S ” —start from. The user can just move
sxsksh SAR elements MRD elements Generic Model Generic Model Document elements sections around and delete what isn't
Analysis Document needed.

Analysis Report Missinnnocx
L Lo

Requirements L3
Document
[1

Space Vehicle Requirements Document Mission Capabilities Document

CONOPS
Conops picn
[Doc S " elements
elements Mission
CONOPS SRD elements c;pabililies
Space Vehicle Document
& 8

&

Document Lo

Operati i Test Plan & Report
ORD elements Test Plan & Report elements.
DOCX] Test Plan &
Operational Report Elements
Requirements & =
Document

Figure 51. Document Generators

The title page of each template includes some custom functions that make the
following code easier to write. Figure shows several of these tools that are im-
ported, allowing for tables to be easily exported and allowing for custom popup
dialog prompts if a document generator should ask for a diagram’s location. In this
example, notice how a popup window asks the user to select their project’s logo from

among the model’s free form diagrams, which is then imported by $diagram.image.

81

Code that follows a ”#” or ”$” is not displayed in the resulting document once it
runs. Some variables, such as $DocumentTitle, $Classification, and $Revisions are
variables that are stored with the template, while others, such as $missionRequire-
ment are pulling each model element with that stereotype assigned to it. Note that in
the Reference Architecture, the ”Mission_Requirement” stereotype is read by Java as
the "missionRequirement” class. To prevent issues if users rename stereotypes, this
practice has been minimized, opting instead to just import tables in their entirety

when possible.

##This imports the dialog tool which allows for popup messages and selections.
ool)

##This displays a popup message when generating the document, reminding users to not edit the text
within the generated document.

$dialog,message(“This generates a generic master document to allow for easy tailoring. All text and
figures come directly from the model. If you wish to fix some text, fix it in the model and regenerate
this document.”)

#import (‘dialog’, ‘g

##This imports the “generic” tool, which helps with automatically generating some of the more
complex tables.

#import('generic', 'com.ng

ableTool')

##This prompts the user to select their document logo from a free form diagram.

#foreach ($diagram in $dialog.select(Ssorer.numanSort(Sreport filterDiagram($Diagram, ['Free Form
Diagram™)), “diagramType:desc’),"Select the correct diagram.”, false, “Please select your document's

logo from a free form diagram.™))
$di .

#end

##This displays the document title, authbr, and revision history, all of which are defined in the report
wizard's “Variable” menu.

$DocumentTitle

$Author
Revision: $Revisions.lastChild.name

Date: $date.get("MMMMM dd, yyyy")

Figure 52. Document Generator Title Page

82

One of the most common functions within these document generators is importing
tables from the model and displaying it using Microsoft Word’s table tool. Some tables
in the model are quite large and hard to read if they are copied and pasted onto a
document, so these templates call the internal elements instead and display them in
a way that’s very easy to customize. Figures and show two ways to import
and display tables. Figure [53| shows a more detailed method to pull only the specific
columns you want, which might be useful for very large tables. This method also
allows for default column widths to reduce formatting once it is generated. This does
present issues if users were to rename the "missionRequirement” class, as the code
wouldn’t find anything to import. The comments in the code should make it clear if
someone opens the template to troubleshoot, but this is still a risk present using this

method.

ID Name Text
$missionRequirement.na | $missionRequirement.text,

me

#forra
w($mi
ssion
Requir
ement
in
$sorte.
thwim,
ansSer.,
(Sbliss
0B
SIS
ment
‘id"))
$missi
onReq

uirem
ent.id

Figure 53. Manual Table Method

Figure [54] shows a more elegant solution, where the template imports a table by
name and displays it exactly as it appears in the model. The downside with this
method is that it requires some modifications once it is generated, as columns will
all be equally sized. Furthermore, some extra columns may be shown that are not
desired, but these can be easily deleted. This method is preferred throughout the

included templates as it is less likely to require modifications. It also displays new

83

columns that users may wish to add without requiring an understanding of the VTL
language to import those new elements.

#fareach($diagram in $Diagram)
#if ($diagram.name == “Mission Requirements Table”)

#set(Stable = $generic.oetlable($diagram))

#forcol($id in $table.getVisikleCalumnlds()$table-gstColumn($idj#endcol

#arrow($row in Stable.getBows())
#forcol($id in $table.getiisibleColumnlds())
Stable.gefValugAsStrng($row, $id)

#endcol#tendrow

Table 7. $diagram.name

#end
#end

Figure 54. Automatic Table Method

4.10 Validation of Model

Modeling styles vary from person to person and organization to organization, so
external feedback was desired for this Reference Architecture to ensure it made sense
to others. To accomplish this, the model was first demonstrated to other students
who previously took AFIT’s Space Vehicle Design sequence, and they were asked to
model a system using the tool. This peer feedback process led to many clarifications
and tweaks, and their models were the impetus for many of the provided value prop-
erties. Furthermore, their common questions were addressed in the included help
guide. Technicians who work on the AFIT CubeSat program were also consulted.
Understanding what they look for and what they call components and subsystems
motivated some design changes to remain as consistent as possible.

After getting peer feedback, the model was demonstrated to faculty members who
will teach the courses in the Space Vehicle Design sequence. Of the three instructors,
only one has significant modeling experience, so this model and included guidance
needed to be usable by students without requiring faculty help for normal modeling

questions. The primary inputs required from the faculty were the inputs to the

84

Document Generators. Because the faculty members decide the format and objectives
for each deliverable report, they were given a chance to provide comments or changes
to the relevant documents that this Reference Architecture will generate for their
classes. If these requirements change in the future, which is highly likely, the students
have been provided guidance for how to make a new template or modify an existing
template so the instructors will not have to understand the underlying template code.

Finally, the CubeSat Reference Architecture is being used by the current cohort
of students in the course sequence. When the first course started, they were given a
lengthy recorded demonstration of the model, with guidance for how to use the cloud
environment, how to use the document generators, and how to use and tailor the
template model for their unique missions. During the duration of the course, they
have an avenue to ask questions and receive help with the model, which may also lead

to changes or improvements in the core Reference Architecture.

4.11 Summary

This chapter presented the design and implementation of a CubeSat Reference
Architecture geared towards a University team on a compressed schedule and with
limited modeling experience. The organizational structure was discussed, and several

of the most important diagrams and built-in tools were explored.

85

V. Conclusion

5.1 Overview

Chapter V]| provides conclusions in light of the overall research that was accom-
plished. The research questions presented earlier are answered based on the work
performed to this point. Finally, important lessons learned throughout this research
development are recorded along with future work that could be done to extend this

research.

5.2 Significance of Research

This research was significant due to the current emphasis in the US Air Force
and US Space Force on Digital Engineering [I]. By using this Reference Architecture,
engineers will have more experience using a model as the ”source of truth” for analysis,
requirements, and as the basis for traditional documentation. Furthermore, several
new concepts and functions were explored in this Reference Architecture that are
now being used in other models, such as the methodology for generating custom
documents, using a validation suite, and establishing a custom Value Type library
instead of the provided ISO-8000 library. In addition, this model is being used as the
platform for more complex integration with MATLAB and STK by other researchers
at AFIT.

As stated in Chapter [} the research objectives were as follows:

1. Create a practical and useful Reference Architecture for rapidly-prototyping

CubeSat designs.

2. Create easy-to-use document generators that use model elements to generate

traditional system level review documentation.

86

3. Present this Reference Architecture to AFIT instructors for feedback.

4. Lay the groundwork for future analysis work with STK and MATLAB integra-

tion for more comprehensive mission analysis using model elements.

These research objectives have all been met over the course of this project. In

addition, the following research questions were considered:

1. What are the tools necessary to perform mission modeling using model-based
systems engineering?
The mission modeling effort is being done using this CubeSat Reference Ar-
chitecture to provide all inputs into constraint blocks that are formatted to

integrate with MATLAB and STK.

2. What viewpoints are most useful to common stakeholders?
Most stakeholders still prefer the traditional documentation, which required
narrative sections to be built into the document generators in addition to using
the system model elements. Additionally, stakeholder prefer higher level view-
points with less clutter. Detailed subsystem details have been limited to the
appropriate subsystem diagrams instead of crowding the main physical decom-
position. Limiting the number of blocks on diagrams led to better views for

presentations, even though it was quite difficult to simplify some diagrams.

3. How can useable documentation be generated from only model elements, keeping
the source of truth within the model?
Custom work using Apache’s Velocity Template Language was needed to gener-
ate polished documents using model elements. The built-in tools within Cameo

are not sufficient, so this was a substantial effort to code and document.

4. What needs to be done in the model to allow for external tools (STK, MATLAB,

etc.) to interact with the MBSE tool?

87

The most important thing was to establish a library of value properties that
worked well with MATLAB and STK. Lessons learned with custom units and
with naming conventions led to the conventions used in the Reference Architec-

ture so that these errors are avoided.

5. Can cloud-based collaboration improve the MBSE design process for interdisci-
plinary teams?
The cloud-based collaboration was extremely valueable. Lessons learned for
this process have been handed down to the first cohort of students to use this
environment in classes. There are some inherent difficulties with storing sensi-
tive information in the cloud, but those issues are being worked out due to the

benefits of the cloud-environment.

5.3 Lessons Learned

Over the course of this research, there were several lessons learned that warrant
discussion. First, developing a Reference Architecture should not be a solitary en-
deavor. The early phases of this project were done primarily alone, but the most
progress was made when other opinions were taken into consideration. Additionally,
the model should be geared towards the key stakeholders, not just the modeler’s pref-
erences. This was made apparent during demonstrations to faculty members, whose
opinions are the most important for this effort. Some design choices made sense
originally, but needed modifications after seeing the greater context of the course
objectives.

Another lesson learned was to embrace the cloud environment for collaboration.
By using the cloud environment, multiple people could be making edits at the same
time, and changes are reflected for all users once they are committed. Its well worth

the effort in setting up the cloud environment, getting each team member an account,

88

and walking through the best practices for cloud modeling at the very start of the
project.

Finally, throughout the design process, the issues caused by copying and past-
ing blocks within a model became apparent. If a user copies and pastes an entire
model (the Generic CubeSat Model for instance), everything seems to work perfectly.
However, if a user copies just one internal package over to a different model, issues
start popping up where you least expect them. Making a Reference Architecture that
includes multiple full models within requires careful consideration before copying el-

ements from one model to another.

5.4 Future Work

One of the primary goals for this CubeSat Reference Architecture was to establish
the platform for future work. Some of that work has already begun, including an
Integrated Mission Modeling Tool that uses the physical structure in the Reference
Architecture to create detailed MATLAB Simulink and STK simulations for mission
modeling. These tools will improve the fidelity of mission simulations and provide
visual views of the orbits for ground contacts, while also simulating multiple payloads
at once.

The Reference Architecture is meant to be improved and adapted over time. As
new teams use the model, they will be creating new physical blocks for components
they chose, and they will be creating new constraint blocks for analysis. These can be
saved in the component library for future reuse, so over time, the component library
can grow and contain more ”plug and play” blocks. Eventually, the component library
should have a variety of components for each subsystem to choose from, and there

should be analysis blocks to tailor depending on the mission’s requirements.

89

There are also some gaps in the Reference Architecture that can be tackled by
other researchers in the future. For example, this current iteration focuses on verifying
subsystem level requirements with hardware tests, but most mission level or system
requirements are not properly accounted for. This was due to the specific requirements
of the Spacecraft Design Sequence at AFIT, but additional functionality can be built
in to verify requirements at the mission or system level for teams who have a need for
that information. Furthermore, only minimal risk functionality has been provided.
Currently, a user can assign a risk level to a requirement, but there is no place to

describe that risk or risk mitigation steps.

5.5 Final Thoughts

This research used the Object Oriented Systems Engineering Method with SysML
to create a CubeSat Reference Architecture. While originally intended to be used by
students at AFIT in their Spacecraft Design Sequence, the model can be tailored to
be used by other teams that have similar goals.

This research delivered a variety of helpful tools for teams to use that makes their
modeling efforts easier. Auto-populating tables and matrices, a library of parts and
value properties to choose from, analysis patterns to tailor, and document generators
will save time and hopefully improve the quality of CubeSat models going forward.
Reports will also be more consistent and standardized according to stakeholder pref-
erence, and the work spaces provided encourage teams to use the model for storing
all relevant data and analysis. Most importantly though, this Reference Architecture
is cementing MBSE practices in teams who have limited experience with modeling

tools, better preparing them for the future of spacecraft design.

90

1]

[10]

[11]
[12]

[13]

Bibliography

U.S. Air Force. Air Force of the Future is Faster, Smarter, Bolder, 2019.
URL https://www.af.mil/News/Article-Display/Article/1963733/roper-
air-force-of-the-future-is-faster-smarter-bolder/.

Erik Kulu. Nanosats database, 2020. URL https://www.nanosats.eu/.

CubeSat Design Specification Rev. 13. California Polytechnic State Univer-
sity, 2014. URL http://cubesat.org.www.cubesat.org/images/developers/
cds_revl3_final2.pdf.

NASA CubeSat Launch Initiative. Cubesat 101: Basic concepts and processes
for first time cubesat developers, 2017. URL https://www.omgwiki.org/MBSE/
doku.php?id=mbse:incoseoosem.

James R. Wertz. Space Mission Engineering: The New SMAD. Microcosm Press,
Torrance, CA, 2011. ISBN 978-1881883159.

eoPortal. FalconSAT-7, 2019. URL https://directory.eoportal.org/web/
eoportal/satellite-missions/f/falconsat-7.

Air Force Academy. FalconSAT-6, 2018. URL https://www.usafa.edu/news/
air-force-academy-satellite-to-1lift-off-nov-19/.

Mark Harris. Swarm Wants to Send Hundreds of Tiny CubeSats Into
Orbit. IEEE Spectrum, 2019. URL https://spectrum.ieee.org/tech-
talk/aerospace/satellites/swarm-wants-to-fly-the-sky-with-tiny-
cubesats.

eoPortal. SSO-A, 2018. URL https://directory.eoportal.org/web/
eoportal/satellite-missions/content/-/article/sso-a.

Dennis Buede and William Miller. The Engineering Design of Systems: Models
and Methods. John Wiley and Sons, Hoboken, NJ, third edition edition, 2016.
ISBN 978-1119027904.

Lenny Delligatti. SysML Distilled. Addison-Wesley, 2014. ISBN 978-0321927866.

Tim Weilkiens. SYSMOD - The Systems Modeling Toolbox. MBSEA4U, second
edition edition, 2016. ISBN 978-3981852981.

Hans-Peter Hoffmann. Systems Engineering Best Pracctices with the Rational
Solution for Systems and Software Engineering. IBM, deskbook release 3.1.2
edition, 2020.

91

https://www.af.mil/News/Article-Display/Article/1963733/roper-air-force-of-the-future-is-faster-smarter-bolder/
https://www.af.mil/News/Article-Display/Article/1963733/roper-air-force-of-the-future-is-faster-smarter-bolder/
https://www.nanosats.eu/
http://cubesat.org.www.cubesat.org/images/developers/cds_rev13_final2.pdf
http://cubesat.org.www.cubesat.org/images/developers/cds_rev13_final2.pdf
https://www.omgwiki.org/MBSE/doku.php?id=mbse:incoseoosem
https://www.omgwiki.org/MBSE/doku.php?id=mbse:incoseoosem
https://directory.eoportal.org/web/eoportal/satellite-missions/f/falconsat-7
https://directory.eoportal.org/web/eoportal/satellite-missions/f/falconsat-7
https://www.usafa.edu/news/air-force-academy-satellite-to-lift-off-nov-19/
https://www.usafa.edu/news/air-force-academy-satellite-to-lift-off-nov-19/
https://spectrum.ieee.org/tech-talk/aerospace/satellites/swarm-wants-to-fly-the-sky-with-tiny-cubesats
https://spectrum.ieee.org/tech-talk/aerospace/satellites/swarm-wants-to-fly-the-sky-with-tiny-cubesats
https://spectrum.ieee.org/tech-talk/aerospace/satellites/swarm-wants-to-fly-the-sky-with-tiny-cubesats
https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/sso-a
https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/sso-a

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[22]

23]

[24]

[25]

[26]

Jeff A. Estefan. Survey of Model-Based Systems Engineering (MBSE) Method-
ologies rev. B. Technical report, Jet Propulsion Laboratory, 2008. URL
http://www.omgsysml.org/MBSE Methodology_Survey_RevB.pdf.

David Walden, Garry Roedler, Kevin Forsberg, Douglas Hamelin, and Thomas
Shortell. Systems Engineering Handbook: A Guide for System Life Cycle Pro-
cesses and Activities. INCOSE, San Diego, CA, fourth edition edition, 2015.
ISBN 978-1118999400.

OMGWiki. INCOSE Object-Oriented Systems Engineering Method (OOSEM),
2011. URL https://www.omgwiki.org/MBSE/doku.php?id=mbse:incoseoosem.

The DoDAF Architecture Framework Version 2.02. Office of the Assistant Secre-
tary of Defense Networks and Information Integration (OASD/NII), 2010. URL
https://dodcio.defense.gov/Library/DoD-Architecture-Framework/.

Robert J. Cloutier, Gerrit Muller, Dinesh Verma, Roshanak Nilchiani, Eirik Hole,
and Mary Bone. The Concept of a Reference Architecture. Technical report,
Systems Engineering, Vol. 13, No. 1, 2010.

Reference Architecture Description. Office of the Assistant Secretary of Defense
Networks and Information Integration (OASD/NII), 2010.

David Jacques and Amy Cox. The use of mbse and a reference architecture
in a rapid prototyping environment. Technical report, Air Force Institute of
Technology, 2019.

David Kaslow. Developing and distributing a cubesat model-based systems en-
gineering reference model - status. Technical report, 2016.

David Kaslow and Azad Madni. Validation and Verification of MBSE-compliant
CubeSat Reference Model. 2017. doi: 10.1109/OCEANS.2018.8604771.

David Kaslow, Philip T. Cahill, and Bradley Ayres. Development and application
of the cubesat system reference model. 2020.

David Kaslow, Grant Soremekun, Hongman Kim, and Sara Spangelo. Inte-
grated Model-Based Systems Engineering (MBSE) Applied to the Simulation of
a CubeSat Mission. IEEFE Aerospace Conference, pages 5015-5020, 2014. doi:
10.1109/TR0OS.2011.6048729.

David Kaslow, Bradley Ayres, and Philip Cahill. Development and Application
of the CubeSat System Reference Model. Technical report, IEEE, 2020.

David Kaslow, Bradley Ayres, Philip Cahill, Laura Hart, and Rose Yntema. De-
veloping a CubeSat Model-Based Systems Engineering (MBSE) Reference Model
- Interim Status 3. Technical report, IEEE, 2017.

92

http://www.omgsysml.org/MBSE_Methodology_Survey_RevB.pdf
https://www.omgwiki.org/MBSE/doku.php?id=mbse:incoseoosem
https://dodcio.defense.gov/Library/DoD-Architecture-Framework/

[27] Sanford Friedenthal and Christopher Oster. Architecting Spacecraft with SysML.
ATAA, 2017. ISBN 978-15442880672.

[28] SAIC. SAID Digital Engineering Validation Tool, 2020. URL https://
www.saic.com/digital-engineering-validation-tool.

[29] Sanford Friedenthal, Rick Steiner, and Alan Moore. A Practical Guide to
SysML. Morgan Kaufmann OMG Press, second edition edition, 2009. ISBN
978-0123786074.

[30] Mark Maier and Eberhardt Rechtin. The Art of Systems Architecting. CRC
Press, 2009. ISBN 978-1420079135.

[31] SysML.org. Four Pillars of SysML, 2020. URL https://sysml.org/sysml-faq/.

93

https://www.saic.com/digital-engineering-validation-tool
https://www.saic.com/digital-engineering-validation-tool
https://sysml.org/sysml-faq/

REPORT DOCUMENTATION PAGE OM"—E‘{,’(}O_A’;‘;@‘LV_%’J%

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)|2. REPORT TYPE 3. DATES COVERED (From — To)
25-03-2021 Master’s Thesis Sept 2019 — Mar 2021
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER
A Reference Architecture for Rapid CubeSat Development

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER
Kelly, Sean R, Capt

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER
Air Force Institute of Technology

Graduate School of Engineering and Management (AFIT/EN)

2950 Hobson Way AFIT-ENV-MS-21-M-240

WPAFB OH 45433-7765

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
AFIT/ENV

Air Force Institute of Technology

WPAFB OH 45433 11. SPONSOR/MONITOR’S REPORT

DSN 785-6565, COMM 937-255-6565 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The CubeSat class of nanosatellites has lowered the barrier of entry to space and has rapidly gained popularity in recent
years. To successfully design a CubeSat system in a rapid cycle conducive to academic timelines, a Reference
Architecture geared towards University CubeSat development would be helpful. A Reference Architecture would speed
up the development process by providing a template, capturing previous work and lessons learned from subject matter
experts, providing a framework to focus on the CubeSat’s design rather than the fine details of modeling software. A
Reference Architecture can also add functionality that student teams could use and improve over time, such as pre-built
analysis functions and a library of components to choose from. This thesis presents a CubeSat Reference Architecture
designed to meet these needs and explores its unique features, diagrams, and custom libraries. The CubeSat Reference
Architecture was validated by relevant course instructors and is being used by a cohort of students in the Spacecraft
Design Sequence at AFIT.

15. SUBJECT TERMS

Reference Architecture, CubeSat, MBSE

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF | 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
a. REPORT | b. ABSTRACT|c. THIS PAGE| ABSTRACT pAGes | Dr- David R. Jacques, AFIT/ENV
19b. TELEPHONE NUMBER (include area code)
U U U U 108 (937) 255-3636, x3329; david.jacques@afit.edu

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. 739.18

	A Reference Architecture for Rapid CubeSat Development
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	General Issue
	Problem Statement
	Scope
	Research Objectives and Questions
	Assumptions and Limitations
	Approach
	Preview

	Literature Review
	Overview
	CubeSats
	Model Based Systems Engineering
	Reference Architectures
	Existing Work
	Validation Tools
	Document Generators
	Summary

	Methodology
	Overview
	Status Quo
	Developing the Reference Architecture
	Instructor Feedback
	Tool Validation
	Summary

	Analysis and Results
	Overview
	Organization
	Guidance
	Requirements
	Structure
	Behavior
	Analysis
	Component Library
	Document Generators
	Validation of Model
	Summary

	Conclusion
	Overview
	Significance of Research
	Lessons Learned
	Future Work
	Final Thoughts

	Bibliography

